
The Nosica specification book
David Jobet

The Nosica specification book
David Jobet

Copyright (c) 2004 David Jobet. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

Table of Contents
1. Basic Concepts .. 1

Application startup .. 1
Application termination .. 1
Declarations ... 1
Members ... 2

Interface members ... 2
Class members ... 3
Enum members ... 3
Metadata members .. 4

Member access ... 4
Signatures and overloading ... 4
Scopes .. 4
Automatic memory management .. 5
Covariance .. 5
Dispatching .. 6
Automatic delegation ... 6
Anonymous classes ... 7
Signal/slot, closure and continuation ... 7
Genericity .. 8

2. Types ...10
Value types ...10

Default constructor ...10
Primitive type ..10
Enum types ...11
Tuple types ...11

References type ...12
Classes type ..12
Interfaces type ...12
Arrays type ...13
Boxing ...13

3. Variables ...14
Static fields ...14
Fields ...14
Parameters ..14

Input parameters ..14
Output parameters ..15

Local variables ..15
4. Conversions ...16

Implicit conversions ...16
Implicit reference upcast conversion ..16
Implicit primitive cast conversion ..16
Implicit primitive boxing conversion ..17
Implicit reference immutable conversion ..17

Explicit conversions ...17
Explicit reference downcast conversion ..17
Explicit reference upcast conversion ..17
Explicit primitive cast conversion ..18

5. Expressions ...19
6. Statements ...20
7. Namespaces ...21

Compilation Unit ...21
Package declaration ..21
Import declaration ..21

Single import ..22
Package import ..22
Implicit imports ...22

Type declaration ..22

iv

Class declaration ..23
Interface declaration ...23
Enum declaration ...23
MetadataType declaration ..23

8. Classes declaration ..24
Field Declaration ...24
Method Declaration ..25

Parameters ..25
Prefixing a method's name with a TypeName ..25

Operator Declaration ..26
Property Declaration ...28

Array properties ...28
Constructor Declaration ...29
Destructor Declaration ..29
Static initializer Declaration ...29
Static deinitializer Declaration ..29

9. Array declaration ..30
10. Interface declaration ..31
11. Enum declaration ..32
12. Tuple declaration ..33
13. Exceptions ...34
14. Attributes ..35
A. GNU Free Documentation License ..36

The Nosica specification book

v

List of Examples
1.1. Nosica's entry point signature .. 1
1.2. TypeName constitution .. 2
1.3. Importing a class ... 2
1.4. Generic class declaration .. 2
1.5. Enum .. 3
1.6. covariant example ... 5
1.7. Multiple dispatch .. 6
1.8. Proxy example .. 6
1.9. Methods and Method instantiation .. 8
2.1. Sample primitive type ...10
2.2. Binding example ..11
2.3. Array example ...13
2.4. Box example ...13
3.1. Input and output parameters ...14
3.2. Value and reference parameters ...14
3.3. output parameters ...15
4.1. Cast operator ...16
4.2. Narrow method ..16
4.3. Boxing conversion ..17
4.4. downcast explicit conversion ..17
4.5. upcast explicit conversion ..18
4.6. Explicit primitive cast conversion ..18
7.1. file structure and package ..21
7.2. Package import ..22
7.3. Class declaration ..23
7.4. Interface declaration ...23
7.5. Enum declaration ...23
8.1. Specifically overloading a method ...26
8.2. Adding a new method to an existing class ...26
8.3. Unary operator signature ..27
8.4. Binary operator signature ...27
8.5. Copy operator signature ...27
8.6. Set property ..28
8.7. Anonymous array access, or how to define a generic class "Map"28

vi

Chapter 1. Basic Concepts
Application startup

An application starts by calling Nosica's entry point. Nosica's entry point is identified by the follow-
ing signature :

Example 1.1. Nosica's entry point signature

static sub main(const string[] args);

• A Nosica application takes as input a list of string parameters. The size of the array is the num-
ber of arguments on the command line plus the name of the executable used to launch the ap-
plication. Therefore,

• args[0] returns the name of the executable

• args[1] return the first argument (if any)

• ...

• args[N - 1] returns the last argument (if any)

With N the size of the array (args.length)

• Before the actual main of a Nosica program is called, the static initializer of each classes get
called. The order in which they get called is not specified and is implementation dependant.

Application termination

• A Nosica application cannot return a value. It must use the System.exit method to do so. If it is
not used at all, then the default return value is used (which is 0).

• After the actual main of a Nosica program is executed, the static deinitializer of each classes get
called. The order in which they get called is not specified and is implementation dependant.

Declarations
A Nosica source file is made of several parts :

• An optional package declaration

• An optional list of import declarations

• One or more top level Nosica declaration. A top level Nosica declaration is either a class, an in-
terface, an enum, or a metadata type description.

Nosica's top level declarations get their namespaces name from the package in which they get
defined, and their own name. Their complete name must match the filesystem's topology.

1

Example 1.2. TypeName constitution

package package1;
class Test {}

In this example, the complete name of class Test is package1.Test.

It is possible to refer to an other type by their complete name, or by a shorter name provided they
get imported. By default, when importing another type, the short name is the name of the type. It is
possible to provides an alternate short name.

Example 1.3. Importing a class

import package1.Test;
import package1.Test MyTest;

The first import form allows one to import package1.Test. The rest of the program can refer to it dir-
ectly via the name "Test". The second import form allows one to import a type and provide its own
custom short name. This is particularly usefull when several classes have same name in different
packages.

It is possible to define several classes in the same Nosica source file, provided they bear the same
name. This is only usefull with generic classes and partial specialisation. This is of no use for inter-
faces, enum and metadata.

Example 1.4. Generic class declaration

class HashMap<T>
{
// default implementation

}

class HashMap<string>
{
// specific implementation for strings

}

The first form defines a class HashMap that can be applied on any type T. The second form spe-
cifies a custom implementation to use when T is in fact a string.

Members
Classes, Interfaces, enums and Metadata have members.

Interface members
Interfaces can contain :

• methods

Basic Concepts

2

• properties

• operators

• nested type declaration

Class members
Classes can contain :

• at most static initializer

• at most static deinitializer

• constructors

• at most one destructor

• methods

• properties

• operators

• cast operators if type is primitive

• fields

• nested type declaration

Enum members
An enum is composed of a list of symbolic typed constants. An enum provide a list of transforma-
tion functions to/from int/string.

Example 1.5. Enum

enum Color {
RED,
GREEN,
BLUE

}

The former example can be seen as syntactic sugar for the following :

class Color implements Enum<Color> {
private int id;
private constructor(int id) { this.id = id; }
private static string[] strings = {"RED", "GREEN", "BLUE"};

static public Color RED = new Color(0);
static public Color GREEN = new Color(1);
static public Color BLUE = new Color(2);

string toString() { return strings[id]; }
int toInt() { return id; }

Basic Concepts

3

static Color fromString(string id) {
if (id.equals("RED")) return RED;
if (id.equals("GREEN")) return GREEN;
if (id.equals("BLUE")) return BLUE;
return null;

}
static Color fromInt(int id) {
switch (id)
{
case 0 : return RED;
case 1 : return GREEN;
case 2 : return BLUE;
default : return null;
}

}
}

Metadata members
@TODO@

Member access
By default a member has "package" access. That means, it is accessible only by members of the
same package. All Nosica top declarations can have either package or public access.

Additionally, it is possible to define finer grain accessibility for classes members :

• public : accessible from anywhere

• protected : accessible only from derived classes

• private : accessible only by members of enclosing class

Signatures and overloading
Uniqueness of a member (its signature) is defined by several properties :

• member's type

• member's name

• member's arguments

• member's modifiers

an argument is defined by its type and its varness. ("var" keyword)

member's modifier are staticness and varness. ("static" and "var" keywords)

It is possible to define several members having several same properties, provided at least one prop-
erty is different. If two members have strictly same properties, this is a compil time error.

Scopes

Basic Concepts

4

Basically, in a nested scope, you cannot hide a name of an enclosing scope. One exception to this is
fields : as they can be accessed via the 'this' variable, you're allowed to hide them by a local variable
or a method's argument.

The scope of a variable is its enclosing block.

The scope of an argument is the method.

The scope of a field is its class and all methods defined in the class and all inner sub classes (not
nested classes).

The scope of variables defined inside a for or foreach statement is the block of the statement.

Automatic memory management
The memory management for an object starts when the object is created via the "new" static method
of the type

1. memory is allocated for it, and the constructor is run

2. when the object is no longer in used (the last reference to it reaches end of scope or is assigned
another value), then the destructor must be run and the memory reclaimed

Note that the contraint "as soon as" imposes a reference counting algorithm. Thus it does not handle
circle references. This may change in the future.

Covariance
When implemening a method of an interface :

Result types are allowed to be covariant.

Input parameters are allowed to be covariant if and only if a method with invariant parameters is
defined.

Example 1.6. covariant example

class A {}
class B extends A {}

interface I {
sub f(A a);

}

class IImpl1 implements I {
public sub f(A a) {} // OK IImpl1.f really implements I.f (arguments are invariant)

}

class IImpl2 implements I {
public sub f(B b) {} // Error IImpl2.f does not implement I.f (arguments are covariant)

}

class IImpl3 implements I {
public sub f(A a) {} // OK IImpl1.f really implements I.f (arguments are invariant)
public sub f(B b) {} // OK IImpl2.f can implements I.f with covariant arguments because IImpl3.f with invariant arguments exist

}

Basic Concepts

5

Dispatching
Dispatching is done on all arguments.

Most of the time, dispatching will be done only on the first argument (the 'this' argument), but
provided several methods with covariant arguments exist, all necessary arguments will be taken into
account to perform the dispatching.

Example 1.7. Multiple dispatch

Multiple dispatchclass Toto {
public static f(A a) {}
public static f(B b) {}

}

A a = new B();
Toto.f(a); // will call Toto.f(B)

Automatic delegation
Fields can be marked as proxy of a type.

The provided type must be a super type of the field's type.

All methods of the given interface are automatically "added" to the enclosing type, and the imple-
mentation consists of a delegation to the field.

Example 1.8. Proxy example

interface I
{
sub f();
int g();

}

class IImpl implements I
{
public () f() { Console.out << "IImpl.f\n"; }
public int g() { Console.out << "IImpl.g\n"; return 1; }

}

class A
{
private IImpl myField proxies IImpl;

}

is equivalent to :

class A
{
private IImpl myField;

public sub f() { myField.f(); }
public int g() { return myField.g(); }

}

Basic Concepts

6

Therefore, this feature can be used to emulate multiple inheritance :

class A extends AbstractA implements I
{
private IImpl myField proxies I;

}

It is always possible to explicitly implement a method delegated to the proxy.

class A extends AbstractA implements I
{
private IImpl myField proxies I;

public sub f() { Console.out << "A.f\n"; }
// g is still forwarded to myField

}

Anonymous classes
Their implementation is defined "inline" with the allocation statement. Anonymous classes are inner
types.

interface I
{
sub f();

}

class SomeClass
{
void someMethod()
{
I i = new I() {
public sub f() { Console.out << "Anonymous I.f\n"; }

}
}

}

This is equivalent to

class SomeClass
{
void someMethod()
{
I i = new AnonymousClass1();

}

private inner class AnonymousClass1 implements I
{
public sub f() { Console.out << "Anonymous I.f\n"; }

}
}

Signal/slot, closure and continuation
Any method can act as a slot.

Any signal can be connected to any slots, provided their signature matches.

Basic Concepts

7

To define a signal, one has just to add the "signal" keyword in front of the method with an empty
implementation.

A method must be seen as an implementation of an inner type whose interface is Method<TupleOut,
TupleIn> where TupleOut is the result type of method and TupleIn is the list of parameter of the
method.

As such, a method is a full closure, and can be used for continuation.

Example 1.9. Methods and Method instantiation

class Foo
{
public () bar(int i)
{
Console.out << "Coucou";

}
}

is equivalent to

class Foo
{
Method<(), (int)> bar = new Method<(), (int)>
{
() operator()(int i)
{
Console.out << "Coucou";

}
}

}

The interface Method is defined as

interface Method<Result, Parameter>
{
Result operator()(Parameter p);

}

Genericity
A class, an interface or a method can be made generic by adding a generic declaration following the
name of the item.

class Vector<T>
{
}

interface Container<T>
{
}

class A
{
public sub f<T>() {
}

Basic Concepts

8

}

A generic declaration can provide one constraints over the generic type :

class HashMap<T inherits Hashable>
{
}

The constraints can be a class or an interface. By default, a generic parameter implements Object.
That is, writing :

class Vector<T>
{
}

is the same as :

class Vector<T inherits Object>
{
}

Basic Concepts

9

Chapter 2. Types
Types are divided into two main categories : value types and reference types.

Value types
A value type is either a primitive type, a tuple or an enum.

Default constructor
If the type defines no default constructor, a default is created for it. The purpose is to allow the value
type to be instantiable by default.

• All reference fields composing the value type are initialised to zero.

• All value fields composing the value type get their default constructor called if it exists. If that's
not the case, this is a compil time error.

• Native types of net.nosica.lang do not get initialised to zero.

Primitive type
A primitive type is a class declared with the "primitive" keyword. It can contains

• at most one static initializer

• at most one static deinitializer

• zero, one or more constructors (if none are defined, a default is created)

• at most one destructor

• methods

• operators

• properties

• cast operators

• fields

Example 2.1. Sample primitive type

primitive class complex
{
public float32 real;
public float32 imaginary;

public complex operator +(complex c) {
complex result;
result.real = real + c.real;
result.imaginary = imaginary + c.imaginary;

10

return result;
}

public complex float32.operator +(complex c) {
complex result;
result.real = this + c.real;
result.imaginary = c.imaginary;

return result;
}

}

Enum types
Enum types contains a list of symbolic constants.

An enum types implements the interface Enum.

An enum has its proper type and can be converted to/from string.

Tuple types
Tuple types are built-in types. They are generated on-the-fly by the compiler, pretty much like ar-
rays. Tuples implements the Tuple interface.

A tuple is a lightweight value type holding one or more anonymous variables. The notation is :

(int, string, Object) tuple;

and this is equivalent to write :

primitive class AnonymousTuple
{
public int anonymous0;
public string anonymous1;
public Object anonymous2;

}

each component of the tuple can be made mutable or not via the "var" modifier. Thus, one can write
:

(var int, string, var Object) tuple;

Tuple binding

it is possible to bind in a one to one relationship a list of variable and a tuple.

Example 2.2. Binding example

(int i, float f) = (1, 2.30);

This is equivalent to :

Types

11

int i;
float f;
(i, f) = (1, 2.30);

Thus, when calling a method, it is both possible to use normal parameter list (or variable list), or a
tuple.

References type
References type are either classes, interfaces or Arrays.

References types are garbage collected.

Default references types include

• Object

• Array

• None

Classes type
A class type defines a data structure plus a set of methods working on the data structures.

Members of a class types are

• fields

• static initializer

• static deinitializer

• constructors

• destructor

• methods

• properties

• operators

A class can extends at most one other class (simple inheritance) and multiple interfaces.

If a class does not explicitly extends a class, it implicitly extends the class Object. Therefore, all
classes directly or indirectly inherits from class Object.

There is a special class named None which implicitly extends all known classes of the compiled pro-
gram. None is the type of the null literal.

Interfaces type
An interface defines only a set of methods. There is no instance of an interface. There is only in-
stances of classes that implements interfaces. Interfaces defines a kind of contract to which a class
must adhere.

Types

12

An interface can extends several other interfaces. A class can implements as much interfaces as it
wishes.

Arrays type
Arrays are built-in types. They are generated on the fly by the compiler. They implements the Array
interface.

Arrays have at least one dimension but they are not limited to one dimension.

Example 2.3. Array example

int[,] i = new int[10, 10];

Boxing
Each value types can be boxed via the Box generic class.

The class Box is defined like :

class Box<T> {
public T value proxies T;

}

Example 2.4. Box example

sub f(Object o) {}

int i = 0;
f(i); // calls with f(new Box<int>(i));

There is no unboxing. The user must test the instance against the Box<T> type and access the un-
derlying value.

Please note that the underlying value is immutable.

Ultimately, the Box type allows the type system to unify value types and references type because ul-
timately all types can be converted into an Object.

Types

13

Chapter 3. Variables
There are several different types of variables in Nosica : static fields, fields, parameters and local
variables.

Variables have a type, possibly an array or a tuple type. Variables may have modifiers : the "var"
modifier or the "static" modifier.

Initial value of array elements and tuple's members is the default value.

Static fields
Static fields are defined with the "static" keyword. They exist before application startup and can be
accessed at any time. They cease to exit after application shutdown.

Initial value of a static field is the default value.

Fields
Fields are members of a class. They are defined inside a class without the "static" keyword.

Fields are created when the instance of the class is created. They cease to exist after the destructor
has been executed.

Initial value of a field is the default value.

Parameters
Parameters can be given in input or in output as in the following syntax :

Example 3.1. Input and output parameters

(int i, Object o) someCall(float f, Array a) {
i = f.narrow();
o = a;

}

Input parameters
There can be value parameters or references parameters.

A value parameter is a parameter defined without the "var" modifier. It means the parameter is im-
mutable and cannot be modified.

A reference parameter is defined with the "var" modifier. A reference parameter does not create a
new storage location. Thus the value of a reference parameter is always the same as the underlying
variable used to perform the call.

Example 3.2. Value and reference parameters

int i = 0;
int j = 0;

14

int[] a1 = int[].new(10);
int[] a2 = int[].new(10);

f(i, j, a1, a2);

sub f(int i, var int j, int[] a1, var int[] a2)
{
j += i;
for (int a = 0; a < a1.length; ++a)
{
a2[a] += a1[a];

}
}

Output parameters
Output parameters are always mutable.

Much like references parameters, output parameters do not create a new storage location. Instead,
they are bound to the variable receiving the value in the caller. If no such variable exist, a new stor-
age location is created in this sole purpose.

Example 3.3. output parameters

(int i, float j) = f();

(int i, float j) f()
{
i = 0;
j = 0;

}

Local variables
A local variables can be declared anywhere inside a block. Some special statements like the for or
foreach statement allows the creation of a local variable inside their declaration.

The lifetime of a local variable is limited by the one of its enclosing block. When its enclosing block
ends, the variable is said to have reached end of scope and is destroyed.

The initial value of a local variable is the default value.

Variables

15

Chapter 4. Conversions
A conversion enables one type to be treated as another. Conversions can be implicit or explicit.

Implicit conversions
Here are the classified implicit conversions :

• Implicit reference upcast conversion

• Implicit primitive cast conversion

• Implicit primitive boxing conversion

• Implicit reference immutable conversion

Implicit reference upcast conversion
It is possible to convert any reference type to one of its super type. A super type being one of the
reference type listed in the extends or implements declaration of the type, recursively.

It is possible to convert an array type TE with an element type E to an immutable array type TS with
an element type S provided S is a super type of E.

It is possible to convert a generic type TE with a generic parameter E to an immutable generic type
TS with a generic parameter S provided S is a super type of E.

As None is the type of the literal 'null' and None implictly inherits from all existing types of the pro-
gram, it is therefore possible to assign any variables the 'null' literal.

As Object is the super type of all references types, it is possible to convert any reference type to Ob-
ject.

Implicit primitive cast conversion
A conversion is allowed from a primitive type P1 to another primitive type P2 provided that P1
defines a cast operator to P2.

Example 4.1. Cast operator

primitive class int8
{
int32 cast();

}

The user should not provide cast operators that loses data. Safe conversion are defined in the
net.nosica.lang packages for the integral type via cast operators.

Unsafe conversion (conversion that loses data) should be declared via explicit narrow() methods.

Example 4.2. Narrow method

16

primitive class int32
{
int8 narrowToInt8();

}

Implicit primitive boxing conversion
A primitive type can be converted into a reference type via the boxing conversion.

Example 4.3. Boxing conversion

Object o = 1; // is equivalent to Object o = new Box<int>(1);

Implicit reference immutable conversion
A mutable reference variable is allowed to be converted into an immutable reference variable. The
reverse is forbidden though.

Value types are always allowed to be converted from/to mutable/immutable variables as thet are
copied.

Explicit conversions
Here are the classified explicit conversions :

• explicit reference downcast conversion

• explicit reference upcast conversion

• explicit primitive cast conversion

Explicit reference downcast conversion
explicit downcast conversion are allowed via the trycast statement.

Example 4.4. downcast explicit conversion

Object o = f();
trycast (o as A a)
{
}
else
{
}

Explicit reference upcast conversion
explicit upcast conversion are allowed via the traditional cast statement.

Conversions

17

Example 4.5. upcast explicit conversion

A a = new A();
Object o = (Object)a;

Explicit primitive cast conversion
It consists in manually calling the cast operator with the cast expression.

Example 4.6. Explicit primitive cast conversion

int8 j = 0;
int32 i = (int32)j;

Conversions

18

Chapter 5. Expressions
There are unary, binary, ternary operators and N-ary operators Assignment : = ~ *= /= %= += -=
@TODO@

• Primary : x.y f(x) a[x] T.new

• Unary : ++x --x +x -x !x (T)x

• Multiplicative : * / %

• Additive : + -

• Stream : << >>

• Relational : < > <= >=

• Equality : == != ~~ !~

• Conditional AND : &&

• Conditional OR : ||

• Implies : =>

• Conditional : ?:

• Assignment : = ~ *= /= %= += -=

@TODO@

19

Chapter 6. Statements
• Statement list and blocks

• Labeled statements

• Local variable declaration

• Expression statement

• If statement

• switch statement

• while statement

• do statement

• for statement

• foreach statement

• break statement

• continue statement

• return statement

• throw and try statement

@TODO@

20

Chapter 7. Namespaces
Namespaces are implicitly defined in Nosica using the package declaration.

The package of a nested type is the complete TypeName of the enclosing type.

It is possible to import an alias into a compilation unit using the import declaration.

Compilation Unit
The compilation unit is the structure of a Nosica file. It consists of an optional top level package de-
claration, followed by a list of zero or more import declarations, followed by a list of one or more
type declarations.

CompilationUnit ::=
[PackageDeclaration]
(ImportDeclaration)*
(TypeDeclaration)+

Package declaration
A package declaration defines the enclosing typename of a type's complete typename.

The syntax is as follows :

PackageDeclaration ::=
"package" TypeName ";"

The compiler will check the file is effectively located into the package defined relatively to the giv-
en sourcepath.

Example 7.1. file structure and package

As an example, suppose we have defined the sourcepath to contain the path

/home/joebar/project

and you define a file named Toto.nos in /home/joebar/project/net/myorg/Toto.nos, then the relative
path between the sourcepath and the file location is net/myorg/Toto.nos. Therefore, the package de-
claration to use should be :

package net.myorg;

Import declaration
An import declaration import a symbol from an outer package inside the current compilation unit.
There are two forms of import package : the short and extended form. The syntax is as follows :

ImportDeclaration ::=
"import" TypeName [Id];

21

The short form would be :

import net.myorg.Toto;

Whilst the extended form would be :

import net.myorg.Toto Toto;

The following two examples have exactly the same effect : the class Toto is now available with a
short name "Toto", but the long full qualified name is always available : net.myorg.Toto. The differ-
ence between the short and the extended form is that in the short form, the chosen alias is always the
last part of the fully qualified name, whilst with the extended form you are free to chose the name
you want.

Single import
If the import declaration specifies a class, an interface, an enum, or a metadata, only the specified
entity is imported in the current compilation unit.

Package import
It is possible to import a whole package at once. Just specify the package you want to import.

It is forbiddent to use the extended import form to specify an alternate name for the package.

The package import is equivalent to manually importing all elements of the package.

Example 7.2. Package import

import net.nosica.lang;

Implicit imports
Each compilation unit implicitly imports two packages :

• net.nosica.lang package

• current package

The purpose is to simplify access to simple types like int, float, string and the likes and to allow the
user to access easily related types defined in the same package as the current compilation unit.

Those default packages takes precedence over user defined imports. It is a compil time error to try to
import a unit under an already defined import name.

Type declaration
The type declaration can either be a ClassDeclaration, an InterfaceDeclaration, an Enum declaration
or a MetaDataType declaration.

Each type declaration defines a name. That name added to the package in which the type is defined
forms the fully qualified typename.

Namespaces

22

Additionnaly, the name of the declared type must match the one of the file in the sourcepath. The
case is important.

Class declaration

Example 7.3. Class declaration

package net.myorg;

class Toto
{
}

Interface declaration

Example 7.4. Interface declaration

package net.myorg;

interface Totoable
{
}

Enum declaration

Example 7.5. Enum declaration

package net.myorg;

enum Color
{
RED, GREEN, BLUE

}

MetadataType declaration
@TODO@

Namespaces

23

Chapter 8. Classes declaration
The syntax is as follows :

ClassDeclaration ::=
(AccessModifiers | ClassModifiers) "class" id [GenericDeclaration] ["extends" TypeName] ["implements" TypeNameList] "{"
(ClassBodyDeclaration)*

"}"

AccessModifiers ::=
"public"

| "private"
| "protected"

ClassModifiers ::=
"abstract"

| "final"
| "primitive"
| "native"

ClassBodyDeclaration ::=
StaticInitializer

| StaticDeinitializer
| ConstructorDeclaration
| DestructorDeclaration
| MethodDeclaration
| PropertyDeclaration
| OperatorDeclaration
| FieldDeclaration

As a class can be generic, it is possible to define several classes in the same compilation unit. In that
case, there must be one and only one complete generic declaration. The other classes must be gener-
ic specialisation classes.

Specialisation are allowed to be put in other files bearing the same fully qualified name. They must
be defined in a distinct sourcepath.

Field Declaration
The syntax is as follows

FieldDeclaration ::=
(AccessModifiers | FieldModifiers)* TupleDeclaration id ";"

FieldModifiers ::=
"static"

| "var"
| "mutable"

Fields are the constituent piece of classes.

Static fields are classes members available at anytime. They are created before program startup and
are destroyed after program termination. Static fields are available and already initialised to their de-
fault values when the static initializer of the class is executed. Static fields are available when the
static deinitializer of the class is executed and are destroyed after the static deinitializer is finished.

Instances fields (non static) are created and initialized to their default value before the instance con-
structor is run. Instances fields are available when the destructor of the instance is run. They are des-

24

troyed after the destructor's execution.

By default, fields are immutable. To make them mutable, one has to use the "var" keyword.

To make a field mutable in an immutable method, the fields has to be further marked as "mutable".

Method Declaration
The syntax for method is the generatl syntax for other method-like entities :

MethodDeclaration ::=
(AccessModifier* | MethodModifiers) ResultType [TypeName "."] Id Arguments ["var"] [ThrowsDeclaration] (";" | Block)

MethodModifiers ::=
"static"

| "final"
| "signal"

ResultType ::=
"sub"

| "(" [ResultTypeDeclaration ("," ResultTypeDeclaration)*] ")"

ResultTypeDeclaration ::=
TupleDeclaration Id

Arguments ::=
"(" [Argument ("," Argument)*] ")"

Argument ::=
["var"] TupleDeclaration Id

A method can be made "static". In that case, it is called a class method. If a method is not static, it is
said to be an instance method.

By default, a method work on an immutable object. To make a method work on a mutable object
you have to suffix it with the "var" modifier.

Parameters
An argument with a "var" modifier is sait do be a reference parameter. An argument without a "var"
modifier is said to be a value parameter.

Value parameter

Value parameters are equivalent to local variable except that they get their values from the caller.
Value parameters are immutable.

Reference parameter

A reference parameters does not create a local storage. It represents the same storage as the one used
to make the call. Reference parameters are always mutable.

Output parameters

Output parameters are always mutable. They exist when entering the method and are initialised to
their default value.

Prefixing a method's name with a TypeName

Classes declaration

25

Method can be prefixed with a TypeName. If the typename T is a super type of the enclosing type,
then the method is overloading the enclosing type's method.

Example 8.1. Specifically overloading a method

interface Base1 {
sub f();

}

interface Base2 {
sub f();

}

class Derived implements Base1, Base2 {
public sub Base1.f() {}
public sub Base2.f() {}

}

It allows one to specifically choose the overloading.

If the typename T is an unrelated type (not a super type), then the method is said to be added to the
type T. Specifically :

• the method is directly accessible via the type T, but

• the method really belongs to E : that means normal access rules applied for private/pub-
lic/protected access.

Example 8.2. Adding a new method to an existing class

public class OStream {
public OStream append(int i);
public OStream append(float32 i);
// ... other methods

}

public class Color {
private int r;
private int v;
private int b;

public OStream OStream.append(Color c) {
this.append(c.r);
this.append(c.v);
this.append(c.b);

return this;
}

}

Operator Declaration

Classes declaration

26

The syntax is as follows

OperatorDeclaration ::=
[AccessModifiers] [TypeName "."] "operator" OperatorName Arguments ["var"] [ThrowsDeclaration] (";" | Block)

OperatorName ::=
UnaryOperators

| BinaryOperators
| NaryOperators

UnaryOperators ::= "-" | "+" | "--" | "++" | "!"

BinaryOperators ::= "-" | "+" | "*" | "/" | "%" | "^" | "~" | "-=" | "+=" | "*=" | "/=" | "%=" | "^=" | "~~" | "!~" | "<<" | ">>"

NaryOperators ::= "()"

Unary operators are always prefix.Binary operators are always infix.

There is no such things as postfix operator as this is handled by the more general method notation.

See the example to add methods in an existing class.

Unary operators have a ()->T signature.

Example 8.3. Unary operator signature

class T {
private int i;
public constructor(int i) {this.i = i; }
public T operator -() {
return T(-i);

}
}

Binary operators have generallt a T->T signature.

Example 8.4. Binary operator signature

class T {
private int i;
public constructor(int i) {this.i = i; }
public T operator -(T rhs) {
return T(i - rhs.i);

}
}

However, the copy operator has a special signature which is T->().

Example 8.5. Copy operator signature

class T {
private int i;
public constructor(int i) {this.i = i; }

Classes declaration

27

public sub operator ~(T rhs) {
this.i = rhs.i;

}
}

Property Declaration
The syntax is as follows

PropertyDeclaration ::=
"property" TupleDeclaration id "{"
[[AccessModifiers] "get" (";" | Block)]
[[AccessModifiers] "set" (";" | Block)]

"}"

A property declaration act as a Field, but it completes the field declaration with accessors : a get ac-
cessor if the equivalent field is to be readable, and a set accessor if the equivalent field is to be writ-
able. If the PropertyDeclaration defines only a get accessor, the equivalent field is said to be read-
only. If the PropertyDeclaration defines only a set accessor, the equivalent field is said to be write-
only.

In the set form, the implicit argument is Id (the id used to define the property).

Example 8.6. Set property

property int i {
public get { return 1; }
protected set { Console.out << i << "\n"; }

}

Array properties
Array properties are like 'normal' properties except they modelize access to an array.

Array properties can have a name or they can be anonymous.

The syntax is as follows :

ArrayPropertyDeclaration ::=
"property" TupleDeclaration [id] Arguments "{"
[[AccessModifiers] "get" (";" | Block)]
[[AccessModifiers] "set" (";" | Block)]

"}"

When the array property is anonymous, then the implicit parameter is named "value".

Example 8.7. Anonymous array access, or how to define a generic class "Map"

class Map<K, V> {
property V[](K key) {
public get { return redBlackTree.getValue(key); }
public set { redBlackTree.setKeyValue(key, value); }

Classes declaration

28

}
}

Constructor Declaration
The syntax is as follows

ConstructorDeclaration ::=
[AccessModifiers] "constructor" Arguments [ThrowsDeclaration] (";" | ConstructorBlock)

ConstructorBlock ::=
"{"
[ExplicitConstructorInvocation]
(BlockStatements)*
"}"

ExplicitConstructorInvocation ::=
"this" FormalParameters

|
"super" FormalParameters

Fields are initialised to their default values when entering the ConstructorDeclaration.

Destructor Declaration
The syntax is as follows

DestructorDeclaration ::=
"destructor" "("")" (";" | Block)

Static initializer Declaration
The syntax is as follows

"initializer" "("")" (";" | Block)

Static deinitializer Declaration
The syntax is as follows

"deinitializer" "("")" (";" | Block)

Classes declaration

29

Chapter 9. Array declaration
Array can have multiple dimensions.

int[] i = int[].new(10);
int[,] j = int[,].new(10, 10);
int[][] k = int[][].new(10);
for (int l = 0; l < k.length; ++l)
j[l] = new int[].new(10);

Arrays implement the Array interface.

public interface Array<T>
{
word length {
get;

};
word dimension {
get;

};
word length(word dim);
T[] {
get;
set;

}
}

In this interface, only mono dimensional array get/set properties are declared. A real array type will
have two set of array get/set accessors : a mono dimensional pair of accessors, and a multi dimen-
sional pair of accessors if the type is multi dimensional.

This allows to represent all multi dimensional arrays with a mono dimensional representation suit-
able for iterations for example.

This also allow to have one super type for all arrays.

30

Chapter 10. Interface declaration
Here's the syntax

InterfaceDeclaration ::=
[AccessModifiers] "interface" id [GenericDeclaration] ["extends" TypeNameList] "{"
(InterfaceMemberDeclaration)*

"}"

InterfaceMemberDeclaration ::=
MethodDeclaration

| PropertyDeclaration
| OperatorDeclaration

31

Chapter 11. Enum declaration
Here's the syntax

EnumDeclaration ::=
[AccessModifiers] "enum" Id "{"
IdList

"}"

IdList ::=
[Id ("," Id)*]An enum declaration contains one or more symbolic typed constant.All enums implements the inteface Enum which defines explicit conversion from/to int and string.interface Enum {
string toString();
sub fromString(string str);
int toInt();
sub fromInt(int id);

}

32

Chapter 12. Tuple declaration
Here's the syntax

TupleDeclaration ::=
TupleMember

| "(" TupleMembers ")"

TupleMembers ::=
[TupleMember ("," TupleMember)*]

TupleMember ::=
TypeName

| TupleDeclaration

Each tuple implements the tuple interface which is just empty.

A tuple is a primitive class with no methods and N anonymous fields. The Ith field has the type of
Ith typename of the tuple.

There is no way to access directly the members of a tuple.

33

Chapter 13. Exceptions
@TODO@

34

Chapter 14. Attributes
@TODO@

35

Appendix A. GNU Free
Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

36

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

* B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

GNU Free Documentation License

37

* C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

* D. Preserve all the copyright notices of the Document.

* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

* F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

* G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

* H. Include an unaltered copy of this License.

* I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

* J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

* K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

* L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

* M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

* N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

* O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

GNU Free Documentation License

38

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License

39

	The Nosica specification book
	Table of Contents
	Chapter 1. Basic Concepts
	Application startup
	Application termination
	Declarations
	Members
	Interface members
	Class members
	Enum members
	Metadata members

	Member access
	Signatures and overloading
	Scopes
	Automatic memory management
	Covariance
	Dispatching
	Automatic delegation
	Anonymous classes
	Signal/slot, closure and continuation
	Genericity

	Chapter 2. Types
	Value types
	Default constructor
	Primitive type
	Enum types
	Tuple types
	Tuple binding

	References type
	Classes type
	Interfaces type
	Arrays type
	Boxing

	Chapter 3. Variables
	Static fields
	Fields
	Parameters
	Input parameters
	Output parameters

	Local variables

	Chapter 4. Conversions
	Implicit conversions
	Implicit reference upcast conversion
	Implicit primitive cast conversion
	Implicit primitive boxing conversion
	Implicit reference immutable conversion

	Explicit conversions
	Explicit reference downcast conversion
	Explicit reference upcast conversion
	Explicit primitive cast conversion

	Chapter 5. Expressions
	Chapter 6. Statements
	Chapter 7. Namespaces
	Compilation Unit
	Package declaration
	Import declaration
	Single import
	Package import
	Implicit imports

	Type declaration
	Class declaration
	Interface declaration
	Enum declaration
	MetadataType declaration

	Chapter 8. Classes declaration
	Field Declaration
	Method Declaration
	Parameters
	Value parameter
	Reference parameter
	Output parameters

	Prefixing a method's name with a TypeName

	Operator Declaration
	Property Declaration
	Array properties

	Constructor Declaration
	Destructor Declaration
	Static initializer Declaration
	Static deinitializer Declaration

	Chapter 9. Array declaration
	Chapter 10. Interface declaration
	Chapter 11. Enum declaration
	Chapter 12. Tuple declaration
	Chapter 13. Exceptions
	Chapter 14. Attributes
	Appendix A. GNU Free Documentation License

