The Nosica specification book
David Jobet

The Nosica specification book
David Jobet

Copyright (c) 2004 David Jobet. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

Table of Contents

2T S ol @00 o= o) = 1
PN ool 1Tor= o g IS = 1 (] o R 1
ApPPlication tErMINGALONviiiii e e 1
D<o i 0 P 1
1= 0711 £ PPN 2

INterface MEMDETSn i 2

ClaSSMEIMDENSuuiiieeeeiiieiii ettt e e e et eeeeeeenes 3

ENUM MEMDEIS ...t 3

Metadata MEMDESSveeiiei e e e e 4
TS 0011 g ool P 4
Signatures and oVErToatingooveeueiiiiii e 4
o0 o< T PP PR PP 4
AUtomMatiC MEMOrY MAaNAgEMENTuuieiieeii e e e e e e e e e e e e e e e aanaees 5
L0007 - g o TP 5
(DR o= ol 011 oo PSP 6
AULOMELIC AEIEGALTON ...t 6
ANONYMOUS CIASSES ...ttt ettt e eeeeeas 7
Signal/slot, closure and CONtINUBLIONc..eeueiiiieiiie e 7
LT 0= o 8

RN 1Y o= 10

VBIUB TYPES ..ttt ettt et e eae 10
Default CONSITUCTONuieei e e e eens 10
PrIMITIVE TYPE et 10
ENUM EYPES ..o 11
QI To = 401 11

L L= (= 10 =] 4 o= 12
ClaSSES LYIE veeeeeiieeeeeereeeeeeeeeeeae 12
INEEITACES LY ettt e e 12
ATTAY S TYPE et 13
BOXING ettt ettt 13

B VATEDIES ... 14
SEAC FIEIUS e 14
= o PSSR 14
PalramMELErS ...t 14

[NPUL PEIBIMELETSeeeieiiiei ettt e et e e e e eaa e ees 14
OULPUL PAIEIMIELET'Seeieee ettt ettt e e e e e e e e eaeeanes 15

LOCaAl VArTBDIES ..o 15

0 1Y/ (= Yo PP SURUPPPPTTTIN 16

IMPLICIT CONMVEISIONS ..utiiiiiiiie et et e et e e e et e e e eeaa e eeeees 16
Implicit reference UpCast CONVErSIONcoeuvunieeeiiinieiiiin e 16
Implicit primitive Cast CONVEISIONuveiiiiiieiiiiie e 16
Implicit primitive bOXing CONVErSIONocouuiiiiiiiiiiiec e 17
Implicit reference immutable CONVErSIONc.cceeviiiiiiiiiiiiieeie e, 17

EXPlICIt CONVEISIONSciviciii e e e e e e e e e aan s 17
Explicit reference downcast CONVErSIONooeveeviiiiiiiiniiiiiinee e, 17
Explicit reference upcast CONVEISIONcooeuuiviiiiiiiiiiii e 17
Explicit primitive Cast CONVEISIONviieuuiieiiiiie e 18

I (0= o o SRR 19

B. STALEMENLS ...oeeiiii i 20

=012 7= o 21
CompPilation UNITeeeee e 21
Package deClarationooooouuiiiiii e 21
IMPOIt AECIAraION ...ceeve ittt e e e eees 21

SINGIEIMPOIT . e 22
Package IMPOIT ... 22
IMPLICIEIMPOITS ..eeecii e e e e e e e e 22

TYPE AECIArAION ...uiieiii e 22

The Nosica specification book

(O TSy (S == (0] o NP 23

INterfaCe AECIaralioncuienieiiii e eaas 23

[LU0 (<ol == 1 o] o 23
MetadataType declarationcccouuiiiiiiiiii e 23

8. ClaSSES UECIAIALIONvveeeeeee e ettt et ettt ettt e e et e e e e 24
TS Lo DI k== 1] 0] o N 24

VL= (gl s MBI == (o) o H 25

Pl ML ErS .. 25

Prefixing a method's namewith aTypeNamecccccevvvviiieiiieeinecieeennn, 25

Operator DECIArationiiiueiiiii e e e e e e e 26
Property DECIAIaIiONc.uuieiiiii et 28
ATTAY PIOPEITIES ...t et e et e e e 28
CONSITUCLOr DECIArGLION ... cueeieieiee ettt e e et e e e e aaenas 29
DESITUCIOr DECIAraLiONviieieiii e e e e ens 29
Static initialiZer DECIArAtiONveiiiiieie e e 29
Static deinitializer DECIAratioNovuiiiiiiiii e 29

9. ATTAY AECIArAION ... 30
10. INtEITACE AECIArELIONeeieiiiee e ettt e e e e eeaaenas 31
O 0 T8 g o (S = o o T 32
12. TUPIE AECIAIELION ...t et e e e e eeans 33
T (= o 1 o 34
N 1 {1 o U< 35
A. GNU Free DocUMENLAtioN LICENSE ...c.veieie ittt a s 36

List of Examples

1.1. NOSICA'S eNtry POINE SIGNAEUMEeevuieiiiiie et e et e et e et e e e e e ne s 1
1.2. TYPENEME CONSHTULION ...ieeiiitee ittt e e e eaas 2
1.3 IMPOItING QCIASS ...ciiiicii e e e e e e e 2
1.4. Genexic ClasS AECIarationccovveermriiiiie e 2
LD UM e anas 3
1.6. COVAaNt EXAMPIE ..ot 5
L7. MUIIPIE AISPAECIN ...t 6
1.8 ProXY @XAMPIE ..ot 6
1.9. Methods and Method iNStaNti@tioncovieeeiiiiiiii e 8
2.1, SaMPIE PrHMIIVE TYPE vt e 10
2.2. BiNdiNg XAMPIE .. ouiiiieei e 11
2.3 ATTQY EXAMPIE .o 13
2.4, BOX BXEMPIE ..ttt 13
3.1. Input and OULPUL PAIIMELETSceeeeeiei ettt e et e e e e e et e e e et e eea e eannas 14
3.2. Value and referenCe ParaMELErSeviee e e e e e e e e e e e e e 14
TG T 0 11 111U | 0= 0. [15
4.0, CASE OPEIGIONeeeee ettt ettt ettt 16
2 T 14 0 1LV 111 1 o o PR 16
4.3. BOXING CONVEISIONueeiiiieee et e ettt ettt e ettt e et e et e e e et e e e enea s 17
4.4. downcast eXPliCIt CONVEISIONccuuiiieeeii ettt e et e e et e e e e eanaees 17
4.5, upcast eXPlICIT CONVEISIONuuiiiiiiiiii e et e e e e e e e e e e e e e et e et e e et eeaaaees 18
4.6. EXplicit primitive Cast CONVEISIONcciuuieiiiieeeieee e e e e e e e e e e e e eanaeees 18
7.1 filestructure and PaCKBOEcceuuiiiiiiiie i 21
7.2. PaCKaQE IMPOIT ...ttt e e et e e 22
7.3. ClasS UECIAIHONoeeeiiiii e e e e eanas 23
7.4, INterfaCe deClarationocoeuiiiieieii e 23
7.5, ENUM AECIArAIONcoveeiiiiiii e 23
8.1. Specifically overloading amethodcccoviiiiiiiiiiii e, 26
8.2. Adding anew method to an existing Classcccuuiiiiiiiiiiiiiii e 26
8.3. UNary Operator SIgNALUIEcceuueeeieei ettt e e et eeai e 27
8.4. BiNary OPErator SIGNAEUME ... ceeeeieeeeei ettt ettt e et e e e e e e e e e e 27
8.5. COPY OPEIatOr SIQNEIUIE ... eeeeeeet e e et et e et e et e e et e e e e et e e e e e et e e ean e aeannas 27
A IS el 0] 0= ¢ Y PPN 28
8.7. Anonymous array access, or how to define ageneric class"Map"c.ccceveviveeennnn. 28

Vi

Chapter 1. Basic Concepts
Application startup

An application starts by calling Nosica's entry point. Nosica's entry point is identified by the follow-
ing signature :

Example 1.1. Nosica's entry point signature

static sub main(const string[] args);

A Nosica application takes as input a list of string parameters. The size of the array is the num-
ber of arguments on the command line plus the name of the executable used to launch the ap-
plication. Therefore,

o argd 0] returns the name of the executable

e argd1] return the first argument (if any)

e argyN - 1] returnsthe last argument (if any)

With N the size of the array (args.length)

Before the actual main of a Nosica program is caled, the static initializer of each classes get
called. The order in which they get called is not specified and is implementation dependant.

Application termination

A Nosica application cannot return a value. It must use the System.exit method to do so. If itis
not used at all, then the default return value is used (which is 0).

After the actual main of a Nosica program is executed, the static deinitializer of each classes get
called. The order in which they get called is not specified and is implementation dependant.

Declarations

A Nosicasourcefileis made of several parts:

An optional package declaration
An optiona list of import declarations

One or more top level Nosica declaration. A top level Nosica declaration is either a class, an in-
terface, an enum, or a metadata type description.

Nosicas top level declarations get their namespaces name from the package in which they get
defined, and their own name. Their complete name must match the filesystem's topol ogy.

1

Basic Concepts

Example 1.2. TypeName constitution

package packagel;
class Test {}

In this example, the complete name of class Test is packagel. Test.

It is possible to refer to an other type by their complete name, or by a shorter name provided they
get imported. By default, when importing another type, the short name is the name of the type. It is
possible to provides an aternate short name.

Example 1.3. Importing a class

import packagel.Test;
import packagel. Test My Test;

Thefirst import form allows one to import packagel.Test. The rest of the program can refer to it dir-
ectly via the name "Test". The second import form alows one to import a type and provide its own
custom short name. This is particularly usefull when several classes have same name in different
packages.

It is possible to define severa classes in the same Nosica source file, provided they bear the same
name. Thisis only usefull with generic classes and partial specialisation. Thisis of no use for inter-
faces, enum and metadata.

Example 1.4. Generic class declaration

class HashMap<T>

/I default implementation

}
class HashMap<string>

/I specific implementation for strings

The first form defines a class HashMap that can be applied on any type T. The second form spe-
cifies a custom implementation to use when T isin fact a string.

Members

Classes, Interfaces, enums and M etadata have members.

Interface members

Interfaces can contain :

e methods

Basic Concepts

e properties
* oOperators

e nested type declaration

Class members

Classes can contain :

» at most static initializer
e at most static deinitializer
» constructors

e at most one destructor

» methods
* properties
» operators

e cast operatorsif typeis primitive
e fidds

» nested type declaration

Enum members

An enum is composed of alist of symbolic typed constants. An enum provide a list of transforma-
tion functions to/from int/string.

Example 1.5. Enum

enum Color {
RED,
GREEN,
BLUE

}

The former example can be seen as syntactic sugar for the following :

class Color implements Enum<Color> {
privateint id;
private constructor(int id) { thisid =id; }
private static string[] strings = {"RED", "GREEN", "BLUE"};

static public Color RED = new Color(0);
static public Color GREEN = new Color(1);
static public Color BLUE = new Color(2);

string toString() { return stringg[id]; }
int tolnt() { returnid; }

Basic Concepts

static Color fromString(string id) {
if (id.equals("RED")) return RED;
if (id.equals("GREEN")) return GREEN;
if (id.equals("BLUE")) return BLUE;
return null;

static Color fromint(int id) {
switch (id)

case 0 : return RED;
case 1: return GREEN;

case 2 : return BLUE;
default : return null;

}
}
}

Metadata members

@TODO@

Member access

By default a member has "package" access. That means, it is accessible only by members of the
same package. All Nosicatop declarations can have either package or public access.

Additionally, it is possible to define finer grain accessibility for classes members :

* public: accessible from anywhere
e protected : accessible only from derived classes

» private : accessible only by members of enclosing class

Signhatures and overloading

Uniqueness of a member (its signature) is defined by several properties:

* member'stype
* member's name
* member's arguments

* member's modifiers

an argument is defined by its type and its varness. ("var" keyword)
member's modifier are staticness and varness. ("static" and "var" keywords)

It is possible to define several members having several same properties, provided at least one prop-
erty isdifferent. If two members have strictly same properties, thisis a compil time error.

Scopes

Basic Concepts

Basically, in a nested scope, you cannot hide a name of an enclosing scope. One exception to thisis
fields : asthey can be accessed viathe 'this variable, you're allowed to hide them by alocal variable
or amethod's argument.

The scope of avariable isits enclosing block.
The scope of an argument is the method.

The scope of afield is its class and al methods defined in the class and all inner sub classes (not
nested classes).

The scope of variables defined inside afor or foreach statement is the block of the statement.

Automatic memory management

The memory management for an object starts when the object is created via the "new" static method
of the type

1. memory isallocated for it, and the constructor is run

2. when the object is no longer in used (the last reference to it reaches end of scope or is assigned

another value), then the destructor must be run and the memory reclaimed

Note that the contraint "as soon as' imposes a reference counting algorithm. Thus it does not handle
circle references. This may change in the future.

Covariance

When implemening a method of an interface:
Result types are allowed to be covariant.

Input parameters are allowed to be covariant if and only if a method with invariant parameters is
defined.

Example 1.6. covariant example

classA {}
class B extends A {}

interface | {
sub f(A a);
}

class IImpll implements| {
public sub f(A @) {} // OK IImpl1.f really implements|.f (arguments are invariant)

class [Impl2 implements | {
public sub f(B b) {} // Error [Impl2.f does not implement |.f (arguments are covariant)

class [Impl3 implements | {
public sub f(A a) {} // OK IImpl1.f really implements |.f (arguments are invariant)
public sub f(B b) {} // OK IImpl2.f can implements |.f with covariant arguments because |Impl3.f with invariant argu

Basic Concepts

Dispatching
Dispatching is done on all arguments.
Most of the time, dispatching will be done only on the first argument (the 'this argument), but

provided several methods with covariant arguments exist, all necessary arguments will be taken into
account to perform the dispatching.

Example 1.7. Multiple dispatch

Multiple dispatchclass Toto {
public static f(A a) {}
public static f(B b) {}

A a=new B();
Toto.f(a); // will call Toto.f(B)

Automatic delegation

Fields can be marked as proxy of atype.
The provided type must be a super type of the field's type.

All methods of the given interface are automatically "added" to the enclosing type, and the imple-
mentation consists of a delegation to the field.

Example 1.8. Proxy example

interface |

{Subf();
int g();
}

class IImpl implements |
public () f() { Console.out << "lImpl.f\n"; }
publicint g() { Console.out << "IImpl.g\n"; return 1; }
classA
private lImpl myField proxies [Impl;
}
isequivaentto:
classA
private lImpl myField;

public sub f() { myField.f(); }
publicint g() { return myField.g(); }

}

Basic Concepts

Therefore, this feature can be used to emulate multiple inheritance :
class A extends AbstractA implements |

private lImpl myField proxiesl;

It is always possible to explicitly implement a method delegated to the proxy.
class A extends AbstractA implements |
private [Impl myField proxies|;

public sub f() { Console.out << "A.f\n"; }
/I g isstill forwarded to myField

}

Anonymous classes

Their implementation is defined "inline" with the allocation statement. Anonymous classes are inner
types.

interface |

{
sub f();

class SomeClass
void someM ethod()

l'i=new I(){
public sub f() { Console.out << "Anonymous |.f\n"; }

Thisisequivaent to
class SomeClass
{

void someM ethod()

I'i = new AnonymousClassl();
}

private inner class AnonymousClassl implements |

public sub f() { Console.out << "Anonymous I.f\n"; }

Signal/slot, closure and continuation

Any method can act asadlot.

Any signal can be connected to any slots, provided their signature matches.

Basic Concepts

To define a signal, one has just to add the "signal" keyword in front of the method with an empty
implementation.

A method must be seen as an implementation of an inner type whose interface is Method<TupleOut,
Tupleln> where TupleOut is the result type of method and Tupleln is the list of parameter of the
method.

As such, amethod isafull closure, and can be used for continuation.

Example 1.9. Methods and M ethod instantiation

class Foo

{
public () bar(int i)
{

Console.out << "Coucou";

}
}

isequivalent to

class Foo

Method<(), (int)> bar = new Method<(), (int)>
{(:) operator()(int i)

Console.out << "Coucou";

}
}
}

The interface Method is defined as
interface M ethod<Result, Parameter>

Result operator()(Parameter p);

Genericity

A class, an interface or amethod can be made generic by adding a generic declaration following the
name of the item.

class Vector<T>

{
}

interface Container<T>

{
}

classA

{
public sub f<T>() {
}

Basic Concepts

A generic declaration can provide one constraints over the generic type:

class HashMap<T inherits Hashable>

{
}

The constraints can be a class or an interface. By default, a generic parameter implements Object.
That is, writing :

class Vector<T>

{
}

isthe sameas:

class Vector<T inherits Object>

{
}

Chapter 2. Types

Types are divided into two main categories : value types and reference types.

Value types

A vauetypeis either a primitive type, atuple or an enum.

Default constructor

If the type defines no default constructor, a default is created for it. The purpose isto allow the value
type to be instantiable by defauilt.
» All reference fields composing the value type are initialised to zero.

» All value fields composing the value type get their default constructor called if it exists. If that's
not the case, thisis a compil time error.

» Native types of net.nosica.lang do not get initialised to zero.

Primitive type

A primitive type is a class declared with the "primitive" keyword. It can contains

e at most one static initializer
» a most one static deinitializer
» zero, one or more constructors (if none are defined, a default is created)

e at most one destructor

* methods
e operators
* properties

* cast operators

+ fidds

Example 2.1. Sample primitive type

primitive class complex

{
public float32 real;
public float32 imaginary;

public complex operator +(complex c) {
complex result;
result.real = rea + c.redl;
result.imaginary = imaginary + c.imaginary;

10

Types

return result;

}

public complex float32.operator +(complex c) {
complex result;
result.real =this+ c.real;
result.imaginary = c.imaginary;

return result;

}
}

Enum types

Enum types contains alist of symbolic constants.
An enum types implements the interface Enum.

An enum has its proper type and can be converted to/from string.

Tuple types

Tuple types are built-in types. They are generated on-the-fly by the compiler, pretty much like ar-
rays. Tuplesimplements the Tuple interface.

A tuple isalightweight value type holding one or more anonymous variables. The notation is:

(int, string, Object) tuple;

and thisis equivalent to write :
primitive class AnonymousT uple
publicint anonymous0;

public string anonymousl;
public Object anonymous2;

}

each component of the tuple can be made mutable or not via the "var" modifier. Thus, one can write

(var int, string, var Object) tuple;

Tuple binding

itis possibleto bind in a one to one relationship alist of variable and atuple.

Example 2.2. Binding example

(inti, float f) = (1, 2.30);

Thisisequivalent to :

11

Types

inti;
float f;
@,) =(1, 2.30);

Thus, when calling a method, it is both possible to use normal parameter list (or variable list), or a
tuple.

References type

References type are either classes, interfaces or Arrays.
References types are garbage collected.

Default references types include

* Object
* Array
* None

Classes type

A class type defines a data structure plus a set of methods working on the data structures.

Members of a classtypes are

o fidds
e staticinitializer
e static deinitidizer

* constructors

» destructor
* methods

e properties
e oOperators

A class can extends at most one other class (simple inheritance) and multiple interfaces.

If a class does not explicitly extends a class, it implicitly extends the class Object. Therefore, all
classes directly or indirectly inherits from class Object.

Thereisaspecia class named None which implicitly extends all known classes of the compiled pro-
gram. None is the type of the null literal.

Interfaces type

An interface defines only a set of methods. There is no instance of an interface. There is only in-
stances of classes that implements interfaces. Interfaces defines a kind of contract to which a class
must adhere.

12

Types

An interface can extends several other interfaces. A class can implements as much interfaces as it
wishes.

Arrays type

Arrays are built-in types. They are generated on the fly by the compiler. They implements the Array
interface.

Arrays have at least one dimension but they are not limited to one dimension.

Example 2.3. Array example

int[,] i = new int[10, 10];

Boxing
Each value types can be boxed via the Box generic class.
The class Box is defined like :

class Box<T> {
public T value proxies T;

}

Example 2.4. Box example

sub f(Object 0) {}

inti =0;
f(i); // calls with f(new Box<int>(i));

There is no unboxing. The user must test the instance against the Box<T> type and access the un-
derlying value.

Please note that the underlying value is immutable.

Ultimately, the Box type allows the type system to unify value types and references type because ul-
timately all types can be converted into an Object.

13

Chapter 3. Variables

There are several different types of variables in Nosica : static fields, fields, parameters and local
variables.

Variables have a type, possibly an array or a tuple type. Variables may have modifiers : the "var"
modifier or the "static" modifier.

Initial value of array elements and tuple's membersis the default value.

Static fields

Static fields are defined with the "static" keyword. They exist before application startup and can be
accessed at any time. They cease to exit after application shutdown.

Initial value of astatic field is the default value.

Fields

Fields are members of aclass. They are defined inside a class without the "static" keyword.

Fields are created when the instance of the class is created. They cease to exist after the destructor
has been executed.

Initial value of afield isthe default value.

Parameters

Input

Parameters can be given in input or in output asin the following syntax :

Example 3.1. Input and output parameters

(int i, Object 0) someCall(float f, Array a) {
i =f.narrow();
0=g&

}

parameters

There can be value parameters or references parameters.

A value parameter is a parameter defined without the "var" modifier. It means the parameter is im-
mutable and cannot be modified.

A reference parameter is defined with the "var" modifier. A reference parameter does not create a

new storage location. Thus the value of a reference parameter is always the same as the underlying
variable used to perform the call.

Example 3.2. Value and reference parameters

inti =0;
intj=0;

14

Variables

int[] a1l = int[].new(10);
int[] a2 = int[].new(10);

f(, j, al, a2);

sub f(int i, var int j, int[] al, var int[] a2)
{j +=1i;

for (int a=0; a< al.length; ++a)
iaZ[a] += allal;

}

Output parameters

Output parameters are always mutable.
Much like references parameters, output parameters do not create a new storage location. Instead,

they are bound to the variable receiving the value in the caller. If no such variable exist, a new stor-
age location is created in this sole purpose.

Example 3.3. output parameters

(inti, float j) = f();
(inti, float j) f()
{

0;
0;

i
j
}

Local variables

A loca variables can be declared anywhere inside a block. Some specia statements like the for or
foreach statement alows the creation of alocal variable inside their declaration.

Thelifetime of alocal variableis limited by the one of its enclosing block. When its enclosing block
ends, the variable is said to have reached end of scope and is destroyed.

Theinitial value of alocal variable is the default value.

15

Chapter 4. Conversions

A conversion enables one type to be treated as another. Conversions can be implicit or explicit.

Implicit conversions

Here are the classified implicit conversions:

» Implicit reference upcast conversion
* Implicit primitive cast conversion
e Implicit primitive boxing conversion

* Implicit reference immutable conversion

Implicit reference upcast conversion

It is possible to convert any reference type to one of its super type. A super type being one of the
reference type listed in the extends or implements declaration of the type, recursively.

It is possible to convert an array type TE with an element type E to an immutable array type TS with
an element type S provided S is a super type of E.

It is possible to convert a generic type TE with a generic parameter E to an immutable generic type
TS with ageneric parameter S provided Sisa super type of E.

AsNoneisthe type of the literal 'null’ and None implictly inherits from all existing types of the pro-
gram, it istherefore possible to assign any variables the 'null’ literal.

As Object is the super type of all references types, it is possible to convert any reference type to Ob-
ject.

Implicit primitive cast conversion

A conversion is alowed from a primitive type P1 to another primitive type P2 provided that P1
defines a cast operator to P2.

Example 4.1. Cast operator

primitive classint8

{
int32 cast();

The user should not provide cast operators that loses data. Safe conversion are defined in the
net.nosica.lang packages for the integral type via cast operators.

Unsafe conversion (conversion that loses data) should be declared via explicit narrow() methods.

Example 4.2. Narrow method

16

Conversions

primitive class int32

int8 narrowTolnt8();

}

Implicit primitive boxing conversion

A primitive type can be converted into areference type via the boxing conversion.

Example 4.3. Boxing conversion

Object 0 = 1; // isequivaent to Object o = hew Box<int>(1);

Implicit reference immutable conversion

A mutable reference variable is alowed to be converted into an immutable reference variable. The
reverse is forbidden though.

Vaue types are always allowed to be converted from/to mutable/immutable variables as thet are
copied.

Explicit conversions

Here are the classified explicit conversions:

» explicit reference downcast conversion
» explicit reference upcast conversion

e explicit primitive cast conversion

Explicit reference downcast conversion

explicit downcast conversion are allowed viathe trycast statement.

Example 4.4. downcast explicit conversion

Object 0 =f();
trycast (0 asA @)
{

}

else

{
}

Explicit reference upcast conversion

explicit upcast conversion are allowed viathe traditional cast statement.

17

Conversions

Example 4.5. upcast explicit conversion
A a=new A();
Object 0 = (Object)a;

Explicit primitive cast conversion
It consists in manually calling the cast operator with the cast expression.
Example 4.6. Explicit primitive cast conversion

int8j=0;
int32 1 = (int32)j;

18

Chapter 5. Expressions

There are unary, binary, ternary operators and N-ary operators Assignment : = ~ *= /= %= += -=
@TODO@

o Primary : x.y f(x) a[x] T.new
e Unary: ++X --X +X -x Ix (T)x
* Multiplicative: * / %

« Additive: + -

e Stream: <<>>

+ Relationa : <><=>=

e Equdity : ==!=~~1~

+ Conditional AND : &&

» Conditional OR: ||

e Implies: =>

» Conditiona : ?.

e Assignment:=~%*=/=%=+=-=

@TODO@

19

Chapter 6. Statements

Statement list and blocks
Labeled statements

Local variable declaration
Expression statement

If statement

switch statement

while statement

do statement

for statement

foreach statement

break statement
continue statement
return statement

throw and try statement

@TODO@

20

Chapter 7. Namespaces

Namespaces are implicitly defined in Nosica using the package declaration.
The package of anested type is the complete TypeName of the enclosing type.

Itis possible to import an aias into a compilation unit using the import declaration.

Compilation Unit

The compilation unit is the structure of a Nosicafile. It consists of an optional top level package de-
claration, followed by alist of zero or more import declarations, followed by alist of one or more
type declarations.
CompilationUnit ::=

[PackageDeclaration]

(ImportDeclaration)*
(TypeDeclaration)+

Package declaration

A package declaration defines the enclosing typename of atype's complete typename.
The syntax isasfollows :
PackageDeclaration ::=

"package’ TypeName";"

The compiler will check the file is effectively located into the package defined relatively to the giv-
en sourcepath.

Example 7.1. file structure and package

As an example, suppose we have defined the sourcepath to contain the path

/home/joebar/project

and you define a file named Toto.nos in /home/joebar/project/net/myorg/Toto.nos, then the relative
path between the sourcepath and the file location is net/myorg/Toto.nos. Therefore, the package de-

claration to use should be :

package net.myorg;

Import declaration

An import declaration import a symbol from an outer package inside the current compilation unit.
There are two forms of import package : the short and extended form. The syntax is as follows:

ImportDeclaration ::=
"import" TypeName [Id];

21

Namespaces

The short form would be :

import net.myorg.Toto;

Whilst the extended form would be:

import net.myorg.Toto Toto;

The following two examples have exactly the same effect : the class Toto is now available with a
short name "Toto", but the long full qualified name is always available : net.myorg.Toto. The differ-
ence between the short and the extended form is that in the short form, the chosen alias is always the
last part of the fully qualified name, whilst with the extended form you are free to chose the name
you want.

Single import

If the import declaration specifies a class, an interface, an enum, or a metadata, only the specified
entity isimported in the current compilation unit.

Package import

It is possible to import awhole package at once. Just specify the package you want to import.
It is forbiddent to use the extended import form to specify an aternate name for the package.

The package import is equivalent to manually importing all elements of the package.

Example 7.2. Package import

import net.nosica.lang;

Implicit imports

Each compilation unit implicitly imports two packages :

» net.nosica.lang package

e current package

The purpose is to simplify access to simple types like int, float, string and the likes and to alow the
user to access easily related types defined in the same package as the current compilation unit.

Those default packages takes precedence over user defined imports. It is a compil time error to try to
import a unit under an already defined import name.

Type declaration

The type declaration can either be a ClassDeclaration, an InterfaceDeclaration, an Enum declaration
or aMetaDataType declaration.

Each type declaration defines a name. That name added to the package in which the type is defined
formsthe fully qualified typename.

22

Namespaces

Additionnaly, the name of the declared type must match the one of the file in the sourcepath. The
case isimportant.

Class declaration

Example 7.3. Class declaration

package net.myorg;
class Toto

{
}

Interface declaration

Example 7.4. I nterface declar ation

package net.myorg;

interface Totoable

{
}

Enum declaration

Example 7.5. Enum declaration

package net.myorg;
enum Color

RED, GREEN, BLUE
}

MetadataType declaration

@TODO@

23

Chapter 8. Classes declaration

The syntax isasfollows :

ClassDeclaration ::=
(AccessModifiers | ClassModifiers) "class' id [GenericDeclaration] ["extends' TypeName] ["implements' TypeNal
(ClassBodyDeclaration)*

}

AccessModifiers ::=
"public"

| "private”

| "protected”

ClassModifiers::=
"abstract”

| “final"

| "primitive"

| "native"

ClassBodyDeclaration ::=
Staticlnitializer

| StaticDeinitializer

| ConstructorDeclaration

| DestructorDeclaration

| MethodDeclaration

| PropertyDeclaration

| OperatorDeclaration

| FieldDeclaration

As aclass can be generic, it is possible to define several classes in the same compilation unit. In that
case, there must be one and only one complete generic declaration. The other classes must be gener-
ic specialisation classes.

Specialisation are allowed to be put in other files bearing the same fully qualified name. They must
be defined in a distinct sourcepath.

Field Declaration

The syntax is as follows

FieldDeclaration ::=
(AccessMoadifiers | FieldModifiers)* TupleDeclarationid ;"

FieldModifiers::=
Ilgai Cll

| Ilvarll

| "mutable"

Fields are the constituent piece of classes.

Static fields are classes members available at anytime. They are created before program startup and
are destroyed after program termination. Static fields are available and already initialised to their de-
fault values when the static initializer of the class is executed. Static fields are available when the
static deinitializer of the classis executed and are destroyed after the static deinitializer is finished.

Instances fields (non static) are created and initialized to their default value before the instance con-
structor is run. Instances fields are avail able when the destructor of the instance isrun. They are des-

24

Classes declaration

troyed after the destructor's execution.
By default, fields are immutable. To make them mutable, one has to use the "var" keyword.

To make afield mutable in an immutable method, the fields has to be further marked as "mutable”.

Method Declaration

The syntax for method is the generatl syntax for other method-like entities :

MethodDeclaration ::=
(AccessModifier* | MethodModifiers) ResultType [TypeName"."] Id Arguments ["var"] [ThrowsDeclaration] (*;" | E

MethodM odifiers ::=
"static"
| “final"
| "signal”
ResultType ::=
Ilwbll
| "(" [ResultTypeDeclaration ("," ResultTypeDeclaration)*] ")"

ResultTypeDeclaration ::=
TupleDeclaration Id

Arguments ::=
"(" [Argument ("," Argument)*] ")"

Argument ::=
["var"] TupleDeclaration Id

A method can be made "static”. In that casg, it is called a class method. If a method is not static, it is
said to be an instance method.

By default, a method work on an immutable object. To make a method work on a mutable object
you have to suffix it with the "var" modifier.

Parameters

An argument with a"var" modifier is sait do be a reference parameter. An argument without a "var"
modifier is said to be a value parameter.

Value parameter

Vaue parameters are equivalent to local variable except that they get their values from the caller.
Value parameters are immutable.

Reference parameter

A reference parameters does not create alocal storage. It represents the same storage as the one used
to make the call. Reference parameters are always mutable.

Output parameters

Output parameters are always mutable. They exist when entering the method and are initialised to
their default value.

Prefixing a method's name with a TypeName

25

Classes declaration

Method can be prefixed with a TypeName. If the typename T is a super type of the enclosing type,
then the method is overloading the enclosing type's method.

Example 8.1. Specifically overloading a method

interface Basel {
sub f();

interface Base2 {
sub f();

class Derived implements Basel, Base2 {
public sub Basel.f() {}
public sub Base2.f() {}

}

It allows one to specifically choose the overloading.

If the typename T is an unrelated type (not a super type), then the method is said to be added to the
type T. Specifically :

» themethod is directly accessible viathetype T, but

» the method really belongs to E : that means normal access rules applied for private/pub-
lic/protected access.

Example 8.2. Adding a new method to an existing class

public class OStream {
public OStream append(int i);
public OStream append(float32 i);
/I ... other methods

}

public class Color {
privateintr;
privateint v;
private int b;

public OStream OStream.append(Color ¢) {
this.append(c.r);
this.append(c.v);
this.append(c.b);

return this;

}
}

Operator Declaration

26

Classes declaration

The syntax is asfollows

OperatorDeclaration ::=
[AccessModifiers] [TypeName "."] "operator" OperatorName Arguments ["var"] [ThrowsDeclaration] (*;" | Block)

OperatorName ::=
UnaryOperators
| BinaryOperators
| NaryOperators
UnaryOperators ::="-" | "+" | "--" | "++" | "I"

BinaryOperalors 1:= "= | "+ | "X |1 | "G" | "N | " 2 | | R | A [T T o

NaryOperators ::="()"

Unary operators are always prefix.Binary operators are always infix.
There is no such things as postfix operator as thisis handled by the more general method notation.
See the example to add methods in an existing class.

Unary operators have a ()->T signature.

Example 8.3. Unary operator signature

classT {
privateint i;
public constructor(int i) {this.i =1i; }
public T operator -() {
return T(-i);
}
}

Binary operators have generallt a T->T signature.

Example 8.4. Binary operator signature

classT {
privateint i;
public constructor(int i) {this.i =i; }
public T operator -(T rhs) {
return T(i - rhs.i);

However, the copy operator has a specia signature which is T->().

Example 8.5. Copy operator signature

classT {
privateint i;
public constructor(int i) {this.i =i; }

27

Classes declaration

public sub operator ~(T rhs) {
this.i = rhsi;
}
}

Property Declaration

The syntax is asfollows

PropertyDeclaration ::=
"property" TupleDeclarationid "{"
[[AccessModifiers] "get" (";" | Block)]
[[AccessModifiers] "set" (";" | Block)]
II}II

A property declaration act as a Field, but it completes the field declaration with accessors : a get ac-
cessor if the equivaent field is to be readable, and a set accessor if the equivalent field is to be writ-
able. If the PropertyDeclaration defines only a get accessor, the equivalent field is said to be read-
only. If the PropertyDeclaration defines only a set accessor, the equivaent field is said to be write-
only.

In the set form, the implicit argument is Id (the id used to define the property).

Example 8.6. Set property

property int i {
public get { return 1; }
protected set { Console.out << i << "\n"; }

}

Array properties

Array properties are like 'normal’ properties except they modelize access to an array.
Array properties can have a name or they can be anonymous.
The syntax isasfollows :

ArrayPropertyDeclaration ::=
"property" TupleDeclaration [id] Arguments"{"
[[AccessModifiers] "get" (";" | Block)]
[[AccessModifiers] "set" (";" | Block)]
II}II

When the array property is anonymous, then the implicit parameter is named "value'.

Example 8.7. Anonymous array access, or how to define a generic class" Map"

class Map<K, V> {
property V[](K key) {
public get { return redBlackTree.getValue(key); }
public set { redBlackTree.setKeyVaue(key, vaue); }

28

Classes declaration

Constructor Declaration

The syntax is asfollows

ConstructorDeclaration ::=
[AccessModifiers] "constructor" Arguments [ThrowsDeclaration] (*;" | ConstructorBlock)

ConstructorBlock ::=
Il{ n
[ExplicitConstructorlnvocation]
(BlockStatements)*

ExplicitConstructorinvocation ::=
"this' Formal Parameters

"super" Formal Parameters

Fields are initialised to their default values when entering the ConstructorDeclaration.

Destructor Declaration

The syntax is as follows

DestructorDeclaration ::=
"destructor” "("")" (*;" | Block)

Static initializer Declaration

The syntax is asfollows

"initializer" "("")" (";" | Block)

Static deinitializer Declaration

The syntax is asfollows

“deinitializer" "("")" (";" | Block)

29

Chapter 9. Array declaration

Array can have multiple dimensions.

int[] i = int[].new(10);

int[,] j = int[,].new(10, 10);

int[][] k = int[][].new(10);

for (int1 = 0; | < k.length; ++)
j[1] = new int[].new(10);

Arraysimplement the Array interface.
public interface Array<T>

word length {
get;

V\;Ot’d dimension {
get;

word length(word dim);
Tl {
get;
Set;
}
}

In this interface, only mono dimensional array get/set properties are declared. A real array type will
have two set of array get/set accessors : a mono dimensional pair of accessors, and a multi dimen-
sional pair of accessorsif thetypeis multi dimensional.

This alows to represent all multi dimensional arrays with a mono dimensional representation suit-
able for iterations for example.

This also alow to have one super type for al arrays.

30

Chapter 10. Interface declaration

Here's the syntax

InterfaceDeclaration ::=
[AccessModifiers] "interface" id [GenericDeclaration] ["extends' TypeNameList] "{"
(InterfaceM emberDeclaration)*

}

InterfaceMemberDeclaration ::=
MethodDeclaration

| PropertyDeclaration

| OperatorDeclaration

31

Chapter 11. Enum declaration

Here's the syntax

EnumDeclaration ::=
[AccessModifiers] "enum™ Id"{"
IdList

II}II

IdList ::=
[Id ("," Id)* JAn enum declaration contains one or more symbolic typed constant.All enums implements the inteface |
string toString();
sub fromString(string str);
int tolnt();
sub fromint(int id);

}

32

Chapter 12. Tuple declaration

Here's the syntax

TupleDeclaration ::=
TupleMember

|"(" TupleMembers™)"

TupleMembers ::=
[TupleMember ("," TupleMember)*]

TupleMember ::=
TypeName
| TupleDeclaration

Each tuple implements the tuple interface which is just empty.

A tuple is a primitive class with no methods and N anonymous fields. The Ith field has the type of
Ith typename of the tuple.

There is no way to access directly the members of atuple.

33

Chapter 13. Exceptions

@TODO@

Chapter 14. Attributes

@TODO@

35

Appendix A. GNU Free
Documentation License

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of thislicense document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License isto make a manual, textbook, or other functional and useful document "free" in the ser
ThisLicenseisakind of "copyleft", which means that derivative works of the document must themselves be freein
We have designed this License in order to use it for manuals for free software, because free software needs free doct
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright hol
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied v
A "Secondary Section" is a named appendix or afront-matter section of the Document that deals exclusively with th
The "Invariant Sections' are certain Secondary Sections whose titles are designated, as being those of Invariant Sect

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in th

A "Transparent” copy of the Document means a machine-readable copy, represented in aformat whose specificatior

36

GNU Free Documentation License

Examples of suitable formats for Transparent copies include plain ASCI| without markup, Texinfo input format, La

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, leg

A section "Entitled XY Z" means a named subunit of the Document whose title either is precisely XY Z or contains >

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Do

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercialy or noncommercialy, provided that

Y ou may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering r

If the required texts for either cover are too voluminous to fit legibly, you should put the first oneslisted (as many a

If you publish or distribute Opague copies of the Document numbering more than 100, you must either include ame

It is requested, but not required, that you contact the authors of the Document well before redistributing any large nt

4. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, p

* A. Useinthe Title Page (and on the covers, if any) atitle distinct from that of the Document, and from those of

* B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modificati

37

GNU Free Documentation License

* C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

* D. Preserve al the copyright notices of the Document.

* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

* F. Include, immediately after the copyright notices, alicense notice giving the public permission to use the Maoc
* G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts given in the Docui
* H. Include an unaltered copy of this License.

* |. Preserve the section Entitled "History", Preserveits Title, and add to it an item stating at least thetitle, year, n
* J. Preserve the network location, if any, given in the Document for public accessto a Transparent copy of the D
* K. For any section Entitled "Acknowledgements' or "Dedications’, Preserve the Title of the section, and preser
* L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section number:
* M. Delete any section Entitled "Endorsements’. Such a section may not be included in the Modified Version.

* N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with any Invariant Sec

* O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and col

Y ou may add a section Entitled "Endorsements’, provided it contains nothing but endorsements of your Modified V

Y ou may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for public

5. COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this License, under the terms defined in secti

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be rej

In the combination, you must combine any sections Entitled "History" in the various original documents, forming or

6. COLLECTIONS OF DOCUMENTS

38

GNU Free Documentation License

Y ou may make a collection consisting of the Document and other documents rel eased under this License, and replac

Y ou may extract a single document from such a collection, and distribute it individually under this License, provide

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is | e

8. TRANSLATION

Trandation is considered a kind of modification, so you may distribute translations of the Document under the term:

If asection in the Document is Entitled "Acknowledgements', "Dedications’, or "History", the requirement (section

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this Licer

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from tin

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numb

39

	The Nosica specification book
	Table of Contents
	Chapter 1. Basic Concepts
	Application startup
	Application termination
	Declarations
	Members
	Interface members
	Class members
	Enum members
	Metadata members

	Member access
	Signatures and overloading
	Scopes
	Automatic memory management
	Covariance
	Dispatching
	Automatic delegation
	Anonymous classes
	Signal/slot, closure and continuation
	Genericity

	Chapter 2. Types
	Value types
	Default constructor
	Primitive type
	Enum types
	Tuple types
	Tuple binding

	References type
	Classes type
	Interfaces type
	Arrays type
	Boxing

	Chapter 3. Variables
	Static fields
	Fields
	Parameters
	Input parameters
	Output parameters

	Local variables

	Chapter 4. Conversions
	Implicit conversions
	Implicit reference upcast conversion
	Implicit primitive cast conversion
	Implicit primitive boxing conversion
	Implicit reference immutable conversion

	Explicit conversions
	Explicit reference downcast conversion
	Explicit reference upcast conversion
	Explicit primitive cast conversion

	Chapter 5. Expressions
	Chapter 6. Statements
	Chapter 7. Namespaces
	Compilation Unit
	Package declaration
	Import declaration
	Single import
	Package import
	Implicit imports

	Type declaration
	Class declaration
	Interface declaration
	Enum declaration
	MetadataType declaration

	Chapter 8. Classes declaration
	Field Declaration
	Method Declaration
	Parameters
	Value parameter
	Reference parameter
	Output parameters

	Prefixing a method's name with a TypeName

	Operator Declaration
	Property Declaration
	Array properties

	Constructor Declaration
	Destructor Declaration
	Static initializer Declaration
	Static deinitializer Declaration

	Chapter 9. Array declaration
	Chapter 10. Interface declaration
	Chapter 11. Enum declaration
	Chapter 12. Tuple declaration
	Chapter 13. Exceptions
	Chapter 14. Attributes
	Appendix A. GNU Free Documentation License

