
The Nosica implementation book
David Jobet

The Nosica implementation book
David Jobet

Copyright (c) 2004 David Jobet. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

Table of Contents
1. General architecture ... 1

Parsing .. 1
Symbol extraction ... 1
Type checking .. 2
Optimisations ... 2
Code production ... 2

2. Parsing .. 3
Current process ... 3

First step ... 3
Second step .. 3

Modifying the parser .. 4
The parser .. 4
Adding missing classes .. 5

3. Symbol extraction .. 8
The process .. 8
The datas ... 8

4. Type checking ..10
Type checking, or ensuring types are compatible ..10

Knowing the type of an expression ..10
Storing variable : the VariableEnvironment ...11
LabelRepository : how to handle jumps ..12
ExceptionEnvironment : how to handle type checking of exceptions12
IR translation ..12

5. C Code Production ..13
Parameter passing ..13

Primitive arguments ..13
References arguments ...14

Results ...15
Primitive result ..15
Reference result ...16
Unwanted results ...17

The assign operator ..17
Definition of a TypeName ...18
Definition of a TypeNameComponent ..19
AliasTable ..20

Structure of an AliasTable ...20
During symbol extraction ..20
During genericity solving ..21
Interface of AliasTable ..21

A. GNU Free Documentation License ..22

iv

List of Examples
2.1. A simple BNF rule .. 4
2.2. The BNF rule in JavaCC ... 4
2.3. Implementing the JavaCC rule ... 4
2.4. Creating the Java Tuple interface .. 5
2.5. Implementing the TupleImpl class .. 6
3.1. Multiple generic types having the same name ... 8
3.2. Non generic typename .. 9
4.1. A simple expression ..10
1. CompilationUnit's example ...20
2. Class/Interface example (relevant for nested versions) ...20

v

vi

Chapter 1. General architecture
The compiler is a multi pass compiler. First pass parses Nosica source code and build an Abstract
Syntax Tree. (AST) Second pass extract symbols from Nosica source file to gather the symbol table
(named SymbolEnvironment). Third pass type checks the source to find errors and produce an Inter-
mediate Representation of the code (IR). Fourth pass is dedicated to various optimisations. Fifth
pass produce c code.

Parsing
Parsing is performed using a generated parser. The grammar is defined in a file called
nosica_parser.jj We use a tool named JavaCC to build our Nosica parser in java. (we will use Ant or
SableCC when we have time in the future) Each grammar rule builds a new node in the AST. The
nodes are defined in net.nosica.parser.node.* Each nodes are Visitable. We have chosen not to use a
tool that builds an AST for you. This is cumbersome to do (write all classes by hand) but this is a
little more memory efficient, and we were able to define some inheritance properties an automated
tool would not have guessed. The parser is available in a class named NosicaParser. All you have to
do is to init() NosicaParser with a file and call the compilationUnit() method to retrieve the AST.

Symbol extraction
Symbol extraction is performed by visiting only top level nodes of the AST. Namely :

• CompilationUnit

• ImportDeclaration

• PackageDeclaration

• ClassDeclaration

• InterfaceDeclaration

• NestedClassDeclaration

• NestedInterfaceDeclaration

• InitializerDeclaration

• DeinitializerDeclaration

• AliasDeclaration

• ConstructorDeclaration

• DestructorDeclaration

• OperatorDeclaration

• MethodDeclaration

• PropertyDeclaration

Those nodes are visited and the Symbol Table is built (the symbol table is called SymbolEnviron-
ment). At this point, as we don't know yet if a type is generic or not, we state the fact that each type
is potentially generic by calling them GenericType.

The SymbolEnvironment contains only GenericType. GenericType contain GenericMethod and

1

Field.

Type checking
Like symbol extraction, type checking is performed by a Visitor. Remaining nodes are analysed re-
cursively till all code of a given method is visited. The type checker ensures types are compatible in
operations like comparison, assignation, method call and so on. In fact, in Nosica everything is type
checked using method call as all operations are described in source code as a method call. As such, a
reference assignment is a call to Object.operator=. A primitive assignment is legal only when
defined on the referenced primitive type. Identicaly, comparisons are legal only if the operations ex-
ist on the type. The task of finding matching methods in method call is left to the MethodResolver.
Basically, a signature is created using the instance, the name of the method to call, and the type of
the arguments. Then the MethodResolver returns a list of matching methods. If there is only one,
there is no errors. If there is none this is an error as no methods were resolved. If there are more than
one, then we have an ambiguity we need to report to user. In parallel, the type checker produces a
simplified representation of the code : the Intermediate Representation (IR). This representation is
composed of fewer nodes (~20 nodes) of very low levels that are very easy to analyse. This is this
representation that is used later to perform analysis of the code for optimisations and code produc-
tion.

Optimisations
Optimisations are performed on IR. This simple representation can be analysed in algorithms like

• constant propagation

• typename analysis

The IR can also be modified in algorithms like :

• Basic Block building/rearranging

• SSA building (Simple Statement Assignment)

• Loop rearranging/unrolling

Of course, we can imagine a lot of algorithm to optimise code, but for now, we have only typename
analysis. We will need to perform SSA building (and unSSA at the end), because it simplifies other
algorithms. We have talked of implementing constant propagation too. This algorithm will allow to
optimise further typename analysis, code branching ...

Code production
Code production is actually performed by emitting c code. For now, we emit a large chunk of c
source code. We have a class named CConverter that is responsible for name mangling, by value/
adress argument passing, etc... In the future we will want to emit source code in smaller chunk. This
will enable us to compare them with older versions of a previous compilation, thus enabling to re-
compil only the changed portion of the code. It will also be possible to perform code production in
other programming languages : Java or Python or whatever and even assembly. But I really think as-
sembly is a bad idea as we don't have the resources to produce code optimised for several architec-
ture. C compiler like gcc already do that.

General architecture

2

Chapter 2. Parsing

Current process
First step

The first step uses 3 files to create the JavaCC parser.

Tool used. jjkeywords.pl (in tools/)

Directory. compiler/sources/net/nosica/parser

Input.

• reserved.cfg

• keywords.cfg

• nosica_parser.jj.in

Output. nosica_parser.jj

Note

Historically, we wanted to automatically generate a tex documentation with files
keyword.cfg and reserved.cfg. We never did it though. In the future we will modify the
way we generate the parser by removing the first step. We will have the possibility to
generate automatically documentation by extracting the keywords and reserved words
instead of generating them. This will be a lot simpler. If you want to do this, feel free !

Second step
The second step uses the generated JavaCC parser to create the Java Parser

Tool used. javacc

Directory. compiler/sources/net/nosica/parser

Input. nosica_parser.jj

output.

• NosicaParser.java

• NosicaParserConstants.java

• NosicaParserTokenManager.java

• ParseException.java

• Token.java

• TokenMgrError.java

3

Modifying the parser
The parser

As you can see, the real input file is in fact the file nosica_parser.jj.in. If you want to look at the file
I'd suggest strongly to read first the JavaCC documentation. Basically, let's say we have the follow-
ing BNF rule :

Example 2.1. A simple BNF rule

tuple ::=
'(' ')'

|
TypeName

|
'(' TypeName (',' TypeName)* ')'

We will want to modify the JavaCC parser by adding a new rule having the following syntax :

Example 2.2. The BNF rule in JavaCC

void Tuple() :
{
}
{
'(' ')'

|
TypeName()

|
'(' TypeName() (',' TypeName())* ')'

}

Then we will add some Java code to retrieve data returned by rule TypeName() like this :

Example 2.3. Implementing the JavaCC rule

Tuple Tuple() :
{
// we add here local variables
Vector typeNames = new Vector(); // Vector<TypeName>
TypeName typeName = null;

}
{
'(' ')'

|
typeName = TypeName()
{ // we can add java code anywhere by opening a block with a brace
typeNames.add(typeName);

}
|
'('
typeName = TypeName() { typeNames.add(typeName); }
(',' typeName = TypeName() { typeNames.add(typeName); }
)*

Parsing

4

')'
{
return new TupleImpl(typeNames);

}
}

Of course, we will have to modify the existing BNF to add a 'call' to the new added BNF rule. In
this case, we will have to modify the MethodDeclaration() rule (for example) so that our new rule is
taken into account.

Note

The Nosica BNF is derived from the Java BNF. We have added BNF rules for

• constructors

• destructors

• static initializer

• static deinitializer

• genericity

• alias declaration (method aliasing and package aliasing)

• properties (to be removed in a future version)

• operators

We have removed rules like

• bitwise operators (because we want them to be performed in library)

• postfix increment operators (we think they are both inefficient and unneeded. In a
high level language, we only need one operation to perform an incrementation)

Of course we have modified other rules as well to introduce

• constness

• primitive types

• native types

• inner types

Adding missing classes
In the former example, we have added code to parse and extract informations from the source code
for a new BNF rule : the tuple rule.

We will now want to add the missing classes and interfaces we have referenced in our Java code :
Tuple and TupleImpl

Example 2.4. Creating the Java Tuple interface

Parsing

5

package net.nosica.parser.node.util.var;

import net.nosica.parser.node.Node;

interface Tuple extends Node
{
/**
* \brief return elements of this tuple
*
* \return Vector<TypeName>
*/
Vector getTypeNames();

}

And

Example 2.5. Implementing the TupleImpl class

package net.nosica.parser.node.util.var;

class TupleImpl implements Tuple
{
private Vector typeNames; // Vector<TypeName>

public TupleImpl(Vector typeNames)
{
this.typeNames = typeNames;

}

public Vector getTypeNames()
{
return typeNames;

}

// implementation of Node.accept for the visitor pattern
public void accept(Visitor visitor)
{
((NodeVisitor)visitor).visit(this);

}
}

Note

Node is the base class of all nodes of the Abstract Syntax Tree (AST) used in Nosica.
A Node is Visitable and Localizable. The first interface allows one to visit the AST,
the latter allows one to assign information to localize a particular node in the source
code. The information consists of a file name, a line number and a column number.
Currently all information is contained in a single string. In the future it is likely we
want to split it into several different fields.

We have now added the missing files for the parser to compil : net.nosica.parser.node.util.var.Tuple,
and net.nosica.node.util.var.TupleImpl. Keep in mind this is only an example. This is very unlikely
we implement tuples this way.

We will now have to modify the NodeVisitor visitors. To make things only compil, we have only to
modify the net.nosica.parser.node.AbstractNodeVisitor and add the missing method AbstractNode-
Visitor.visit(net.nosica.parser.node.util.var.Tuple tuple)

Parsing

6

From this point on, the parser will be able to recognize tuples. We will now have to modify the sym-
bol extraction pass and the type checker to handle them.

Note

Currently, this is how we choose the namespaces of the parser classes :

• filestructure : in this package we have classes related to package and import declar-
ations : these are the declaration placed before the classes and interfaces declara-
tion.

• util : in this package we have miscellaneous classes : classes related to genericity,
typename, literal, operators ...

• typedeclaration : in this package we have classes related to declaration of types :
class declaration, interface declaration, methode declaration, field declaration ...

• typedeclaration.expression : in this package we have classes related to expressions
in methods. Expressions are pieces of code with side effect but with no modifica-
tions of the flow of the program. Things like AdditionExpression, PrimaryExpres-
sion ...

• typedeclaration.statement : in this package we have classes related to statements.
These are pieces of code that possibly have side effects and control the flow of the
program : things like Block, IfStatement, ForStatement ...

Parsing

7

Chapter 3. Symbol extraction
The process

All classes related to symbol extraction to feed the symbol table are located in the package
net.nosica.symbol

As we need only to create symbol information (ie type description), we need only to visit the upper
nodes of the AST. Therefore, the algorithm is quite simple to do and to understand.

Basically, when we visit a ClassDeclaration, we create a new type (a GenericType). Then recurs-
ively we visit all sub nodes of a ClassDeclaration (all of type ClassBodyDeclaration or Interface-
MemberDeclaration). This way we will read all methods and fields and sub types of a particular
types.

This process is implemented in class net.nosica.symbol.FeedSymbolVisitor. As the name of the
class indicates, the purpose is to visit the AST and to extract relevant information to feed the symbol
table.

The datas
Our symbol table is called SymbolEnvironment. It contains only the types gathered during the sym-
bol extraction. You can see it as a Map of TypeName to GenericType. In fact this is a little more
complicated as several generic types can have the same name. (in the case some are specialisations
of another one)

Example 3.1. Multiple generic types having the same name

package some.package;

class MyTraits<T implements Numeric>
{
word limit() { return T.max(); }

}

class MyTraits<int8>
{
word limit() { return 255; }

}

In this example, the FeedSymbolVisitor will create two instances of GenericType. First one will be
named as some.package.MyTraits<T>, second one will be named some.package.MyTraits<int8>

At this stage (is symbol extraction), we can't resolve yet types like int8. This is because we can't
know if we have parsed int8 yet. Because of that, we cannot know if int8 is a real concrete type. In
this case, we handle int8 and T the same way : as generic types.

Later, we will be able to understand int8 is a real concrete type, hence
some.package.MyTraits<int8> is not a generic type but a real concrete type. But right now we don't
know yet.

Instead of storing GenericType directly as a map TypeName->GenericType, we prefer to store them
by their non generic typename.

A non generic typename being just the typename without any generic information.

8

Example 3.2. Non generic typename

Complete typename (a generic one) : some.package.MyTraits<T>

Non generic one : some.package.MyTraits

As specialised version of generic types may exist, this means the key we use is not unique. For ex-
ample, the types from Example 3.1, “Multiple generic types having the same name” [8] will have
the same non generic counterparts.

Hence, the first key gives access to a secondary map indexed by the real complete generic type-
name.

Hence to access GenericType 'GT' having 'tn' as TypeName, the symbolEnvironment must follow
the steps :

1. create 'ngtn' (non generic typename) as the non generic counterpart of 'tn'

2. access the value (which is a map) indexed by key 'ngtn'

3. access the value in the secondary map by key 'tn'

4. access 'GT'

Symbol extraction

9

Chapter 4. Type checking
A Nosica class is type checked method by method. The method's complete AST is passed to the
type checker and is visited by the type checker algorithm.

Currently, the type checker is made of two separate Java class. The first one, called StatementVisit-
or, visits and typecheck statements. The second one, TypeCheckVisitor, visits and typecheck ex-
pressions. The reason for splitting the type checking in two different class is only to have smaller al-
gorithm to manage. Another reason is that type checking statements and expressions are really two
different jobs.

The type checker has another job : it must translate on the fly the Nosica code into a lower level
repreentation we call Intermediate Representation (IR). The IR being composed of fewer different
nodes, this simplifies the other stage of the compiler like analysis, optimisations and target code pro-
duction.

Type checking, or ensuring types are com-
patible

The main job of a type checker is ensuring types are compatible. For example, let's say I have a
method whose full signature is :intfint iThen calling f() with a string must lead to the detection
of an error. To detect there is an error, we must be able to deduce the type of the parameter we pass
to method f, as well as which method is f.

Knowing the type of an expression
To know the type of an expression, we have to type check each component of the expression till we
end up with a terminal expression whose type is known. We know the types of literals, like int or
string. We also know the types of variable, because in Nosica, you have to define a variable (with its
type) before using it. So, if we encounter a variable like say 'var', either we have registered it before
and we know its type, either we do not know it and that's a type check error. In an expression like :

Example 4.1. A simple expression

int var = 3; 1 + var

We know the type of '1' : that's net.nosica.lang.int32, and we know the expression of var because we
have found it in the VariableEnvironment. And that's net.nosica.lang.int32 too.

When typechecking this expression we will end up in method visit(AdditiveExpression) of class
TypeCheckVisitor. The node contains several information :

the left expression (lhs) : a literal (type net.nosica.parser.node.util.literal.Literal) the right expression
(rhs) : a PrimaryExpression (type
net.nosica.parser.node.typedeclaration.expression.PrimaryExpression) the operator : either '+' or '-'.
The type checker will first visit the left expression and will return with the appropriate type. Then,
the type checker will visit the right expression and return with the appropriate type too. Then the
typechecker will have to determine if int32 and int32 can be added via the '+' operator. To do do, it
will have to look into lhs and see if it exists a '+' operator. It will have to see if this operator accept a
int32 as parameter. If this is the case, then the call can be done, else this is a type check error.

Now that we have found int32 indeed allows a '+' operation with another int32 as rhs, we can take
the result of this call (of type int32) and returns it as the result of the type checking of an Additive-
Expression.

Compatible rules

10

When type checking the general rule "Expression1 Op ExpressionArguments", we will end up with
the following type checked arguments : TypeName1 Op TypeNameArguments. With TypeNameAr-
guments a list of TypeName. This signature will have to be searched on type TypeName1, and as
result, a list of methods matching operation name "Op" will be returned. We now have to select a
subset of those methods by looking if type name of arguments are compatible.

a primitive is compatible with another primitive if and only if they are of same type, or if it exists a
cast operator between the source and the target.
a reference is compatible with another reference if and only if they are of same type, or if the source
type derives from the target type.

Storing variable : the VariableEnvironment
Variables are stored in a VariableEnvironment. Basically, this is a table indexed by the name of a
variable.

The VariableEnvironment has another job : it must remember the scope of variables. This enables
the type checker to only say : "begin a scope", "add this variable", "end the scope (and returns the
list of terminated variables)".

Scope is important because in Nosica, destructor must be called as soon as the variable reaches end
of scope.

For a primitive type, this is easy : this is at the end of the scope. So we have to get the list of termin-
ated variables and insert code (in the IR) to call the appropriate destructors.

Feor a reference type, this is a little more complicated as reference variable must be destroyed as
soon as the instance is no more reachable from the code. As we can register an instance (the instance
is being pointed to by the variable) in a global structure like a container, a field of a class, or in a
variable with a longer scope, reference variable may escape the scope where they have been de-
clared. To handle it, we have chosen just to insert a special node in the IR which is called
SCOPELEAVE and just indicates that the variable is no longer live. This node will later be handled
by a garbage collector (implementation dependant) and/or an analysis algorithm. In the current im-
plementation, the garbage collector being just a reference couting algorithm (thus that do not handle
circular references), we just add where needed couple of INCREF/DECREF IR node.

VariableEnvironmentImplimplements VariableEnvironment {

void save();

Vector<Variable> restore();

void getNumberOfActiveScope();

Vector<Variable> variableInScope(int nbScope);

add(Variable variable);

void get(string name);

}

This interface is located in package net.nosica.compiler.typechecker. It is used mainly by State-
mentVisitor which create a scope (by calling method enter()) each time a block is entered.

When the block is ended, the method restore() is called, thus retrieving the list of terminated vari-
ables, and the appropriate code is inserted into IR.

Type checking

11

LabelRepository : how to handle jumps
In Nosica, you can use loop to repeat repetitive tasks. Loops like for, do...while, while, and in the fu-
ture foreach must be handled. We can prematuraly resume a loop or escape it using the keywords
continue/break. That means we handle labels.

Labels are mainly computed and created as necessary by the compiler. Sometimes, the user want to
specify himself a label because it may want to break or resume several outer loops.

It is important to properly handles labels as, while we leave/enter a block, we have to properly des-
troy live variables present accross the boundaries of this block.

As for now, the LabelRepository is splitted into two parts. First one is externalised in
net.nosica.compiler.application (and should be in net.nosica.compiler.typechecker), second part is
handled directly by StatementVisitor.

The LabelRepository has nearly the same interface as the VariableEnvironment. Except that what is
being stored are Label instead of Variable.

Each time a Statement is type checked, a pair of Labels named the begin label and the end label are
generated. Those labels will be used in case the statement that is going to be type checked is a loop.
They are generated in advance because we don't know yet if the labels will have to be computer
generated, or user defined. If the statement we're about to type check is in fact a LabeledStatement,
then all we have to do is take the user defined label, verify it is not already defined using the La-
belReporitory, add it to the LabelRepository and replace the computer generated beginLabel/endLa-
bel with the couple userDefinedLabel/endLabel.

If we encounter a loop, this couple will have to be pushed into a structure handled by StatementVis-
itor (that should be merged with LabelRepository). This structure has one role : make a correspond-
ance between label's scope and variable's scope so that we can properly defined the latter when we
use break/continue keywords. Entering/leaving a block is handled by global methods enterB-
lock()/endBlock().

Label handling apart, the statement will just translate Nosica loop code into the equivalent IR code.
Proper comments are placed in each block describing how is translated the control flow.

ExceptionEnvironment : how to handle type checking
of exceptions

To be done

IR translation
IR translation is driven by the type checker. The TypecheckVisitor, handling only exceptions, is
quite straightforward. The StatementVisitor handling the control flow is more complicated. Both
TypeCheckVisitor and StatementVisitor do not know the IR. They just manipulate an interface
called IRTranslator (located in net.nosica.compiler.application).

The IRTranslator is responsible for proper translation between high level Nosica expression to low
level IR expressions.

Type checking

12

Chapter 5. C Code Production
Nosica can emit code with different backends thanks to its Intermediate Representation stage. For
now, only a "c" code production back end has been implemented.

Parameter passing
We're emitting C, so basically, we cannot apply constructors, copy constructors or assign operators
directly on the variables stored in the frame.

Passing reference variables is quite straightforward, while passing primitive variables (by value se-
mantic) is a little bit tricky.

Primitive arguments

Const primitive passing

Const primitive arguments have a 'by value' semantic. That means we have to duplicate them when
we want to pass them 'const'.

string s;
T.f(s);

class T {
public static void f(const string s) {
// use s

}
}

is translated into

net_nosica_lang_string s;
net_nosica_lang_string_constructor(&s);
T_f(s);

void T_f(net_nosica_lang_string temp) {
net_nosica_lang_string s;
net_nosica_lang_string_constructor(&s);
net_nosica_lang_string_operator_iassign(&s, temp);
// use s
net_nosica_lang_string_destructor(&s);

}

The rules are simple :

• From the caller, there's nothing special to do

• From the callee, and for an incoming const primitive argument A

• creates a temporary 'temp'

• constructs 'temp'

• calls the assign operator between 'temp' and 'A' : 'temp' <- 'A'

• modify the IR so that the code uses 'temp' instead of 'A' everywhere.

13

• destroy 'temp'

Rationale :

• if A contains mutable reference arguments, we want to be able to modify them without the
caller's copy to be affected, so we have to duplicate the variables, just as c++ would do.

In an optimised version, perhaps can we remove duplication when A does not contain mutable
fields.

Var primitive passing

Var primitive passing have a 'by pointer' semantic.

string s;
T.f(s);

class T {
static public sub f(var string s) {
// use s

}
}

is translated into

net_nosica_lang_string s;
net_nosica_lang_string_constructor(&s);
T_f(&s);

void T_f(net_nosica_lang_string *s) {
// use s

}

So that's quite straightforward.

References arguments
References arguments are always passed by pointer, so that's easier to handle. The rules are the
same, regardless of the 'constness' (or the 'varness') of the variable.

A a = new A();
T.f(a);
T.f2(a);

class T {
static public sub f(A a) {
}
static public sub f2(const A a) {
}

}

is translated into :

A a;
a = ALLOC();

C Code Production

14

A_constructor(a);
T_f(a);
T_f2(a);

void T_f(A *a) {
INCREF(a);
// use a
DECREF(a);

}

void T_f2(A *a) {
INCREF(a);
// use a
DECREF(a);

}

So the rules are, for each reference arguments,

• insert an INCREF at the beginning of the function

• insert a DECREF at the end of the function

Results
retrieving result from a function can be tricky in the primitive case

Primitive result
Just as the "const parameter passing", and because we don't emit assembly, we cannot directly modi-
fy the variables stored in the stack. Like const parameter passing, we have a "by value" semantic.

string s = T.f();

class T {
static public string f() {
return string(new char[0]);

}
}

is translated into

// sring s;
net_nosica_lang_string s;
net_nosica_lang_string_constructor(&s);
// temp = T.f();
net_nosica_lang_string temp;
temp = T_f();
// s = temp;
net_nosica_lang_string_operator_iassign(&s, temp);
net_nosica_lang_string_destructor(&temp); // end of scope for temp : let's destroy it
net_nosica_lang_string_destructor(&s);

net_nosica_lang_string T_f() {
// temp = new char[0];
net_nosica_lang_char_array *temp;
temp = ALLOC();
net_nosica_lang_char_array_constructor(&temp, 0);

C Code Production

15

INCREF(temp);
// temp2 = string(temp);
net_nosica_lang_string temp2;
net_nosica_lang_string_constructor(&temp2, temp);
DECREF(temp); // end of scope for temp : let's destroy it
// return temp2; (equivalent to assigning it to a 'fake' variable result)
net_nosica_lang_string result;
net_nosica_lang_string_constructor(&result);
net_nosica_lang_string_operator_iassign(&result, temp2);
net_nosica_lang_string_destructor(&temp2); // end of scope for temp2 : let's destroy it

return result;
}

That seems to be really complicated, but that's quite simple. We use the c compiler to generate a
hard copy of the result (just like it does when passing it on the stack). Therefore, that copy must be
constructed in the callee and destructed in the caller so that each instance is constructed once and
destructed once. That's the hard part. So that's not that hard, is it ?

In the previous example, the result is stored into a temporary variable named "result". This variable
is constructed but never destroyed. Of course, the previous code is not optimised. We can construct
the result directly into temp2 instead of using another variable, but we're not talking about optimisa-
tions here.

The 'result' variable is passed into the 'temp' variable in the caller. And temp is properly destroyed so
everything's safe.

The rules are simple :

• in the caller

• retrieve the result of the call in a temporary variable (do not construct it)

• at the end of the scope of this temporary variable, destroy it

• in the callee

• construct a temporary variable 'result'

• assign the result to the temporary variable 'result'

• do not destroy 'result'

Reference result
The reference case is much simpler

A a = T.f();

class T {
static public A f() {
return new A();

}
}

C Code Production

16

is translated into

A *a;
a = T_f();
DECREF(a);

A *T_f() {
A *temp;
temp = ALLOC();
A_constructor(temp);
INCREF(temp);
return temp;

}

You can draw a parallel here between primitive result and reference result : in the callee, the result
must use an INCREF, and should not be DECREFed. In the caller, the variable is received normally
and then is DECREFed at the end of the scope.

Unwanted results
Sometime, we call a method that returns a result we're not interested in.

In order for the reference counting algorithm to succeed, each result must be properly assigned a
temporary variable which is then destroyed in the usual way, by

• calling the proper destructor for a primitive variable

• applying a DECREF operation on a reference variable

The assign operator
The nosica assign operator has the following signature :

class T {
sub operator~(T rhs) {
// do the copy

}
}

Originally, the operator's signature was T->T instead of T->(). Unfortunately, the terms of the equa-
tions were then :

• T->T signature (T operator~(T rhs))

• by value result

It appears that this equation has no solution. A by-value result needs the copy operator which has a
T->T signature. Hence the copy operator needs to returns the result by value, so this leads to an in-
finite recursion.

As this problem is a language problem and not an implementation problem, we had to change the
language on that point.

C Code Production

17

Definition of a TypeName
TypeName are the basic building block of Nosica's type system. TypeName is a very important ba-
sic block as it is created during parsing, and get transformed during all stages of compilation. This is
the only type used from parsing to production. So chances are you will see it everywhere.

A TypeName describes several things : package, class or interface name, array information and gen-
eric information. A TypeName has several predicats like :

boolean isArray();
;
boolean isScalar();
;
boolean isGeneric();
;
boolean isEmpty();
;
These predicat allows to analyse the content of a TypeName. If the TypeName is not generic nor an
array, it is possible to iterate over its components. You will use methods :
Iterator iterateComponents();
;
TypeName getFirstComponents();
;
TypeNameComponent getLastComponent();
;
To respectively, iterate through components of TypeName, get the package part of a TypeName (ie,
the first N-1 elements), or get last component (ie the last Nth element). Each component of a Type-
Name is a TypeNameComponent.

18

Definition of a
TypeNameComponent

TypeNameComponent are the components of a TypeName. A TypeNameComponent can be generic
or not. The predicat is :
boolean isGeneric();
;
And the method to iterate over generic parameters is :
Iterator iterateGenericExtension();
;
This method returns an iterator over all TypeName as the generic parameters. You can retrieve the
package component name by calling the method
String getPackageElement();
;

19

AliasTable
An alias table is just a kind of map from a short name to a complete TypeName

Structure of an AliasTable
An alias table is composed of

• a parent AliasTable

• a map

During symbol extraction
AliasTable are created during symbol extraction. The top level AliasTable represent package
net.nosica.lang. In this root AliasTable all components of package net.nosica.lang are listed. You
will find for example

• int8 -> net.nosica.lang.int8

• string -> net.nosica.lang.string

An AliasTable is created for each CompilationUnit (and take net.nosica.lang's AliasTable as parent
AliasTable) An AliasTable is created for each classes and interfaces (and take its CompilationUnit's
AliasTable as parent AliasTable) An AliasTable is created for each nested classes and interfaces
(and take its enclosing's AliasTable as parent AliasTable) The CompilationUnit AliasTable contains
aliases for each import directive.

Example 1. CompilationUnit's example

package net.myorg;

import net.nosica.containers.Vector;

import net.myOrg.util.MyUtil

This will create an AliasTable with parent net.nosica.lang's AliasTable and with a map containing
the following keys :

• Vector -> net.nosica.containers.Vector

• MyUtil -> net.myOrg.util.MyUtil

For each classes and interfaces (and nested one), the AliasTable will contain aliases for each import
directive, and for each template's arguments

Example 2. Class/Interface example (relevant for nested versions)

20

class MyClass<T> {

import net.package1.A A1;

import net.package2.A A2;
}

This will create an AliasTable with parent CompilationUnit's AliasTable and with a map containing
the following keys :

• T -> T

• A1 -> net.package1.A

• A2 -> net.package2.A

During genericity solving
During genericity solving, the GenericitySolver will transform a type coming from Symbol extrac-
tion to a fully resolved non generic (ie with qualified generic parameters) types. During this process,
new AliasTable will be created. The resulting AliasTable will contain

• as parent : the AliasTable created during symbol extraction

• as map : the resolved generic parameters

Generic methods will have a custom AliasTable on the same model

• parent : enclosing type's AliasTable

• as map : the resolved generic parameters

Interface of AliasTable
An AliasTable must be seen as a map. As a result, it is possible to iterate through all aliases, to
query for the existence of a particular alias, to get the resolved form of an alias.

As an AliasTable "reuse" its enclosing aliasTable (the parent), it is possible to query for an existing
parent (true in most cases) and to retrieve the parent AliasTable. However those methods should be
of no interest most of the time.

Of course, a query is performed on current AliasTable and sent to parent's AliasTable if the result
can not be carried out in the current AliasTable.

AliasTable

21

Appendix A. GNU Free
Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

22

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

* B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

GNU Free Documentation License

23

* C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

* D. Preserve all the copyright notices of the Document.

* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

* F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

* G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

* H. Include an unaltered copy of this License.

* I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

* J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

* K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

* L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

* M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

* N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

* O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

GNU Free Documentation License

24

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License

25

	The Nosica implementation book
	Table of Contents
	Chapter 1. General architecture
	Parsing
	Symbol extraction
	Type checking
	Optimisations
	Code production

	Chapter 2. Parsing
	Current process
	First step
	Second step

	Modifying the parser
	The parser
	Adding missing classes

	Chapter 3. Symbol extraction
	The process
	The datas

	Chapter 4. Type checking
	Type checking, or ensuring types are compatible
	Knowing the type of an expression
	Compatible rules

	Storing variable : the VariableEnvironment
	LabelRepository : how to handle jumps
	ExceptionEnvironment : how to handle type checking of exceptions
	IR translation

	Chapter 5. C Code Production
	Parameter passing
	Primitive arguments
	Const primitive passing
	Var primitive passing

	References arguments

	Results
	Primitive result
	Reference result
	Unwanted results

	The assign operator

	Definition of a TypeName
	Definition of a TypeNameComponent
	AliasTable
	Structure of an AliasTable
	During symbol extraction
	During genericity solving
	Interface of AliasTable

	Appendix A. GNU Free Documentation License

