The Nosica implementation book
David Jobet

The Nosica implementation book
David Jobet

Copyright (c) 2004 David Jobet. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

Table of Contents

1. General @rChitECIUNEovveiiiiei e e e e e e et e e e e 1
L 5 o P 1
SYMDBOL EXIFECHION ... 1
TYPE CNECKING ..ttt e e 2
OPLIMISALIONS ... ceeete ettt ettt e e e e e e raa s 2
16010 (=] /(0o (8o 1] o KPP 2

2 o 6 o [P 3
LN = 1 o] 00 =S 3

T = 1= o TSP 3
S o006 [(= o SO PP TOPPTTR 3
MOIfYING the PArSEro e 4
TR PSS et 4
Adding MiSSING ClaSSES ...vvuiiiieiii e 5

IS Y101 oo I =TT - 1 o o 8
THE PIOCESS ...ttt e e et e et 8
TREAALAS ...v e 8

4. TYPECNECKING ...ttt 10
Type checking, or ensuring types are compatibleccoooviiiiiiiiiiiee, 10

Knowing the type of an eXPressioncecevieiiiieiiie e e 10
Storing variable : the VariableEnvironmentcccccoeviiiiiiiiniineceeeen, 11
LabelRepository : how to handle jumpscoooveiiiiiiiiin e, 12
ExceptionEnvironment : how to handle type checking of exceptions 12
1R =10 = 1 o o PPN 12

5. C COAEPIOUUCTION ...ttt e e e e e e ean s 13

ParamELEr PASSING ...vvuueireieiiie i e 13
Primitive argUmMENtSoiiii e 13
ReEfEreNCES arQUIMENLScoviiiiiiii et 14

RESUITS .. 15
PrimitivVe reSUItooee e 15
REFEIENCETESUIL ... et 16
UNWaNEE FESUILS ..oevuiieiiii e eaenns 17

B L= SS Yo (1o)== (o 17

Definition of @TYPENGIME ... 18

Definition of a TYpeNameCOMPONENTuuiiiiiiiieiiii et 19

ABSTADIE .t 20
Structure of an AlIaSTaDIEc.uiii e 20
During symbol eXtraCtioncoceuiiiiiiiii e 20
DUuring genericity SOIVINGiviveieiiieii e e e 21
Interface of AlASTADIEieee e 21

A. GNU Free Documentation LiCENSEvveuiiiiieeiieeieee e ee e e e e e eanaeees 22

List of Examples

2L ASMPIEBNF FUIE «.oeeii et e 4
2.2. The BNF rulein JAVACC ...t e e 4
2.3. Implementing the JAVaCC TUIEccouuniiii e 4
2.4. Creating the Java TUPl @ INtEIaCe ... cvvvn e e 5
2.5. Implementing the Tuplelmpl Classoooiiiiiiii e 6
3.1. Multiple generic typeshaving the SEmenNameooeveviiiiiiiiinecii e 8
3.2. NON GENENIC LYPENAIME ... ettt ettt ettt e et e e et e e e e e re s 9
4.0, A SIMPIE EXPIESSION ..ttt e et et e e e e e e e et et et e et et e e e e e e eaa e ee 10
1. CompilationUnit's @XamPlecveiniii e 20
2. Clasd/Interface example (relevant for nested VErsions)ccccevvviiiveviiieviineciieeennnn, 20

Vi

Chapter 1. General architecture

The compiler is a multi pass compiler. First pass parses Nosica source code and build an Abstract
Syntax Tree. (AST) Second pass extract symbols from Nosica source file to gather the symbol table
(named Symbol Environment). Third pass type checks the source to find errors and produce an Inter-
mediate Representation of the code (IR). Fourth pass is dedicated to various optimisations. Fifth
pass produce ¢ code.

Parsing

Parsing is performed using a generated parser. The grammar is defined in a file called
nosica_parser.jj We use atool named JavaCC to build our Nosica parser in java. (we will use Ant or
SableCC when we have time in the future) Each grammar rule builds a new node in the AST. The
nodes are defined in net.nosicaparser.node.* Each nodes are Visitable. We have chosen not to use a
tool that builds an AST for you. This is cumbersome to do (write all classes by hand) but thisis a
little more memory efficient, and we were able to define some inheritance properties an automated
tool would not have guessed. The parser is available in a class named NosicaParser. All you have to
doisto init() NosicaParser with afile and call the compilationUnit() method to retrieve the AST.

Symbol extraction

Symbol extraction is performed by visiting only top level nodes of the AST. Namely :

» CompilationUnit

e ImportDeclaration

» PackageDeclaration

+ ClassDeclaration

* InterfaceDeclaration

* NestedClassDeclaration

* NestedinterfaceDeclaration

 InitializerDeclaration

* DeinitializerDeclaration

* AliasDeclaration

* ConstructorDeclaration

» DestructorDeclaration

» OperatorDeclaration

* MethodDeclaration

» PropertyDeclaration

Those nodes are visited and the Symbol Table is built (the symbol table is called Symbol Environ-
ment). At this point, as we don't know yet if atype is generic or not, we state the fact that each type
is potentially generic by calling them GenericType.

The SymbolEnvironment contains only GenericType. GenericType contain GenericMethod and

General architecture

Field.

Type checking

Like symbol extraction, type checking is performed by a Visitor. Remaining nodes are analysed re-
cursively till al code of a given method is visited. The type checker ensures types are compatible in
operations like comparison, assignation, method call and so on. In fact, in Nosica everything is type
checked using method call as all operations are described in source code as a method call. As such, a
reference assignment is a call to Object.operator=. A primitive assignment is legal only when
defined on the referenced primitive type. Identicaly, comparisons are legal only if the operations ex-
ist on the type. The task of finding matching methods in method call is left to the MethodResol ver.
Basically, a signature is created using the instance, the name of the method to call, and the type of
the arguments. Then the MethodResolver returns a list of matching methods. If there is only one,
thereis no errors. If thereis none thisis an error as no methods were resolved. If there are more than
one, then we have an ambiguity we need to report to user. In parallel, the type checker produces a
simplified representation of the code : the Intermediate Representation (IR). This representation is
composed of fewer nodes (~20 nodes) of very low levels that are very easy to analyse. Thisis this
representation that is used later to perform analysis of the code for optimisations and code produc-
tion.

Optimisations

Optimisations are performed on IR. This simple representation can be analysed in algorithms like

* constant propagation
* typename analysis

The IR can also be modified in agorithmslike:

» Basic Block building/rearranging
» SSA building (Simple Statement Assignment)
e Loop rearranging/unrolling

Of course, we can imagine alot of agorithm to optimise code, but for now, we have only typename
analysis. We will need to perform SSA building (and unSSA at the end), because it simplifies other
algorithms. We have talked of implementing constant propagation too. This algorithm will allow to
optimise further typename analysis, code branching ...

Code production

Code production is actually performed by emitting ¢ code. For now, we emit a large chunk of ¢
source code. We have a class named CConverter that is responsible for name mangling, by value/
adress argument passing, €etc... In the future we will want to emit source code in smaller chunk. This
will enable us to compare them with older versions of a previous compilation, thus enabling to re-
compil only the changed portion of the code. It will also be possible to perform code production in
other programming languages : Java or Python or whatever and even assembly. But | really think as-
sembly is a bad idea as we don't have the resources to produce code optimised for several architec-
ture. C compiler like gcc already do that.

Chapter 2. Parsing

Current process
First step

The first step uses 3 filesto create the JavaCC parser.
Tool used. jjkeywords.pl (in tools/)
Directory. compiler/sources/net/nosical/parser

Input.

» reserved.cfg
» keywords.cfg

* nosica parser.jj.in
Output. nosica_parser.jj

Note

Historically, we wanted to automatically generate a tex documentation with files
keyword.cfg and reserved.cfg. We never did it though. In the future we will modify the
way we generate the parser by removing the first step. We will have the possibility to
generate automatically documentation by extracting the keywords and reserved words
instead of generating them. Thiswill be alot simpler. If you want to do this, feel free!

Second step

The second step uses the generated JavaCC parser to create the Java Parser
Tool used. javacc

Directory. compiler/sources/net/nosi cal/parser

Input. nosica _parser.jj

output.

* NosicaParser.java

* NosicaParserConstants.java

» NosicaParserTokenManager.java
» ParseException.java

» Tokenjava

e TokenMgrError.java

Parsing

Modifying the parser

The parser

Asyou can see, thereal input fileisin fact the file nosica _parser.jj.in. If you want to look at the file
I'd suggest strongly to read first the JavaCC documentation. Basically, let's say we have the follow-
ing BNFrule:

Example 2.1. A smple BNF rule

tuple ::=
|)
TypeName

|
(' TypeName (', TypeName)* ')’

We will want to modify the JavaCC parser by adding a new rule having the following syntax :

Example 2.2. The BNF rulein JavaCC

void Tuple() :
{
}
{
)

I
TypeName()

(' TypeName() (', TypeName())*)’

Then we will add some Java code to retrieve data returned by rule TypeName() like this:

Example 2.3. Implementing the JavaCC rule

Tuple Tuple() :

/l we add here local variables
Vector typeNames = new Vector(); // Vector&|t; TypeName& gt;
TypeName typeName = nulll;
}
{l LINAN
I ()
typeName = TypeName()
{ I/ we can add java code anywhere by opening a block with abrace
typeNames.add(typeName);

| c
typeName = TypeName() { typeNames.add(typeName); }
(', typeName = TypeName() { typeNames.add(typeName); }
)*

Parsing

l)l
{
return new Tuplel mpl (typeNames);

}
}

Of course, we will have to modify the existing BNF to add a 'call’ to the new added BNF rule. In
this case, we will have to modify the MethodDeclaration() rule (for example) so that our new ruleis
taken into account.

Note

The NosicaBNF is derived from the Java BNF. We have added BNF rules for

» constructors

* destructors

o dtaticinitializer

o static deinitializer

» genericity

» diasdeclaration (method aliasing and package aliasing)
* properties (to be removed in afuture version)

» operators

We have removed rules like

» hitwise operators (because we want them to be performed in library)

» postfix increment operators (we think they are both inefficient and unneeded. In a
high level language, we only need one operation to perform an incrementation)

Of course we have modified other rules as well to introduce

* constness
e primitive types
e nativetypes

e inner types

Adding missing classes

In the former example, we have added code to parse and extract informations from the source code
for anew BNF rule: thetuple rule.

We will nhow want to add the missing classes and interfaces we have referenced in our Java code :
Tuple and Tuplelmpl

Example 2.4. Creating the Java Tuple interface

Parsing

package net.nosica.parser.node.util.var;
import net.nosi ca.parser.node.Node;

interface Tuple extends Node

{

/**

* \brief return elements of thistuple

*

* \return Vector<TypeName>
*/
Vector getTypeNames();

And

Example 2.5. Implementing the Tuplel mpl class

package net.nosica.parser.node.util .var;

class Tuplelmpl implements Tuple
private Vector typeNames; // Vector<TypeName>
public Tuplelmpl(Vector typeNames)

this.typeNames = typeNames;

public Vector getTypeNames()
{

return typeNames;

}

/I implementation of Node.accept for the visitor pattern
public void accept(Visitor visitor)

((NodeVisitor)visitor).visit(this);

Note

Node is the base class of al nodes of the Abstract Syntax Tree (AST) used in Nosica.
A Node is Visitable and Localizable. The first interface alows one to visit the AST,
the latter allows one to assign information to localize a particular node in the source
code. The information consists of a file name, a line number and a column number.
Currently al information is contained in a single string. In the future it is likely we
want to split it into several different fields.

We have now added the missing files for the parser to compil : net.nosica.parser.node.util.var. Tuple,
and net.nosica.node.util.var. Tuplelmpl. Keep in mind thisis only an example. Thisis very unlikely
we implement tuples this way.

We will now have to modify the NodeVisitor visitors. To make things only compil, we have only to
modify the net.nosica.parser.node.AbstractNodeVisitor and add the missing method AbstractNode-
Visitor.visit(net.nosica.parser.node.util.var. Tuple tuple)

6

Parsing

From this point on, the parser will be able to recognize tuples. We will now have to modify the sym-
bol extraction pass and the type checker to handle them.

Note

Currently, thisis how we choose the namespaces of the parser classes:

» filestructure : in this package we have classes related to package and import declar-
ations : these are the declaration placed before the classes and interfaces declara-
tion.

+ util : in this package we have miscellaneous classes : classes related to genericity,
typename, literal, operators ...

» typedeclaration : in this package we have classes related to declaration of types :
class declaration, interface declaration, methode declaration, field declaration ...

» typedeclaration.expression : in this package we have classes related to expressions
in methods. Expressions are pieces of code with side effect but with no modifica-
tions of the flow of the program. Things like AdditionExpression, PrimaryExpres-
sion ...

» typedeclaration.statement : in this package we have classes related to statements.
These are pieces of code that possibly have side effects and control the flow of the
program : things like Block, IfStatement, ForStatement ...

Chapter 3. Symbol extraction

The process

All classes related to symbol extraction to feed the symbol table are located in the package
net.nosica.symbol

As we need only to create symbol information (ie type description), we need only to visit the upper
nodes of the AST. Therefore, the algorithm is quite simple to do and to understand.

Basically, when we visit a ClassDeclaration, we create a new type (a GenericType). Then recurs-

ively we visit al sub nodes of a ClassDeclaration (all of type ClassBodyDeclaration or Interface-
MemberDeclaration). This way we will read all methods and fields and sub types of a particular

types.
This process is implemented in class net.nosica.symbol.FeedSymbolVisitor. As the name of the

classindicates, the purposeisto visit the AST and to extract relevant information to feed the symbol
table.

The datas

Our symbol tableis called Symbol Environment. It contains only the types gathered during the sym-
bol extraction. You can see it as a Map of TypeName to GenericType. In fact this is a little more
complicated as several generic types can have the same name. (in the case some are specialisations
of another one)

Example 3.1. Multiple generic types having the same name

package some.package;
class MyTraits<T implements Numeric>

word limit() { return T.max(); }

class MyTraits<int8>

word limit() { return 255; }

In this example, the FeedSymbolVisitor will create two instances of GenericType. First one will be
named as some.package.MyTraits<T>, second one will be named some.package.MyTraits<int8>

At this stage (is symbol extraction), we can't resolve yet types like int8. This is because we can't
know if we have parsed int8 yet. Because of that, we cannot know if int8 is areal concrete type. In
this case, we handle int8 and T the same way : as generic types.

Later, we will be able to understand int8 is a real concrete type, hence
some.package.MyTraits<int8> is not a generic type but area concrete type. But right now we don't
know yet.

Instead of storing GenericType directly as a map TypeName->GenericType, we prefer to store them
by their non generic typename.

A non generic typename being just the typename without any generic information.

8

Symbol extraction

Example 3.2. Non generic typename

Complete typename (a generic one) : some.package.MyTraits<T>

Non generic one : some.package.MyTraits

As specialised version of generic types may exist, this means the key we use is not unique. For ex-
ample, the types from Example 3.1, “Multiple generic types having the same name” [8] will have

the same non generic counterparts.

Hence, the first key gives access to a secondary map indexed by the real complete generic type-
name.

Hence to access GenericType 'GT' having 'tn' as TypeName, the symbol Environment must follow
the steps :

1. create'ngtn’' (non generic typename) as the non generic counterpart of ‘tn'

2. accessthe value (which isamap) indexed by key 'ngtn'

3. accessthevaluein the secondary map by key 'tn'

4. access'GT'

Chapter 4. Type checking

A Nosica class is type checked method by method. The method's complete AST is passed to the
type checker and is visited by the type checker algorithm.

Currently, the type checker is made of two separate Java class. The first one, called StatementVisit-
or, visits and typecheck statements. The second one, TypeCheckVisitor, visits and typecheck ex-
pressions. The reason for splitting the type checking in two different classis only to have smaller a-
gorithm to manage. Another reason is that type checking statements and expressions are really two
different jobs.

The type checker has another job : it must translate on the fly the Nosica code into a lower level
repreentation we call Intermediate Representation (IR). The IR being composed of fewer different
nodes, this simplifies the other stage of the compiler like analysis, optimisations and target code pro-
duction.

Type checking, or ensuring types are com-
patible

The main job of a type checker is ensuring types are compatible. For example, let's say | have a
method whose full signatureis:i nt fi nt i Then calling f() with a string must lead to the detection
of an error. To detect there is an error, we must be able to deduce the type of the parameter we pass
to method f, as well aswhich method isf.

Knowing the type of an expression

To know the type of an expression, we have to type check each component of the expression till we
end up with aterminal expression whose type is known. We know the types of literals, like int or
string. We also know the types of variable, because in Nosica, you have to define avariable (with its
type) before using it. So, if we encounter a variable like say 'var', either we have registered it before
and we know its type, either we do not know it and that's atype check error. In an expression like :

Example 4.1. A smple expression

intvar =3; 1+ var

We know the type of '1' : that's net.nosica.lang.int32, and we know the expression of var because we
have found it in the VariableEnvironment. And that's net.nosica.lang.int32 too.

When typechecking this expression we will end up in method visit(AdditiveExpression) of class
TypeCheckVisitor. The node contains severa information :

the left expression (Ihs) alitera (type net.nosica.parser.node.util.literal. L|teral) the right expression
(rhs) a PrimaryExpression (type
net.nosica.parser. node typedeclaration. expron PrimaryExpression) the operator : either '+' or '-
The type checker will first visit the left expression and will return with the appropriate type. Then
the type checker will visit the right expression and return with the appropriate type too. Then the
typechecker will have to determine if int32 and int32 can be added via the '+' operator. To do do, it
will haveto look into Ihs and seeiif it exists a'+' operator. It will have to see if this operator accept a
int32 as parameter. If thisisthe case, then the call can be done, else thisis atype check error.

Now that we have found int32 indeed allows a '+' operation with another int32 as rhs, we can take

the result of this call (of type int32) and returns it as the result of the type checking of an Additive-
Expression.

Compatible rules

10

Type checking

When type checking the general rule "Expressionl Op ExpressionArguments’, we will end up with
the following type checked arguments : TypeNamel Op TypeNameArguments. With TypeNameAr-
guments a list of TypeName. This signature will have to be searched on type TypeNamel, and as
result, a list of methods matching operation name "Op" will be returned. We now have to select a
subset of those methods by looking if type name of arguments are compatible.

a primitive is compatible with another primitive if and only if they are of same type, or if it exists a
cast operator between the source and the target.

areference is compatible with another reference if and only if they are of sametype, or if the source
type derives from the target type.

Storing variable : the VariableEnvironment

Variables are stored in a VariableEnvironment. Basically, this is a table indexed by the name of a
variable.

The VariableEnvironment has another job : it must remember the scope of variables. This enables
the type checker to only say : "begin a scope”, "add this variable", "end the scope (and returns the
list of terminated variables)".

Scope is important because in Nosica, destructor must be called as soon as the variable reaches end
of scope.

For a primitive type, thisis easy : thisis at the end of the scope. So we have to get the list of termin-
ated variables and insert code (in the IR) to call the appropriate destructors.

Feor a reference type, this is a little more complicated as reference variable must be destroyed as
soon as the instance is no more reachable from the code. As we can register an instance (the instance
is being pointed to by the variable) in a globa structure like a container, a field of a class, or in a
variable with a longer scope, reference variable may escape the scope where they have been de-
clared. To handle it, we have chosen just to insert a special node in the IR which is called
SCOPELEAVE and just indicates that the variable is no longer live. This node will later be handled
by a garbage collector (implementation dependant) and/or an analysis algorithm. In the current im-
plementation, the garbage collector being just a reference couting algorithm (thus that do not handle
circular references), we just add where needed couple of INCREF/DECREF IR node.

Vari abl eEnvi ronment | npl i npl ements Vari abl eEnvi ronnent {

voi d save();

Vect or <Vari abl e> restore();

voi d get Nunmber Of Acti veScope();

Vect or <Vari abl e> vari abl el nScope(i nt nbScope);
add(Vari abl e vari abl e) ;

void get(string name);

This interface is located in package net.nosica.compiler.typechecker. It is used mainly by State-
mentVisitor which create a scope (by calling method enter()) each time ablock is entered.

When the block is ended, the method restore() is called, thus retrieving the list of terminated vari-
ables, and the appropriate code isinserted into IR.

11

Type checking

LabelRepository : how to handle jumps

In Nosica, you can use loop to repeat repetitive tasks. Loops like for, do...while, while, and in the fu-
ture foreach must be handled. We can prematuraly resume a loop or escape it using the keywords
continue/break. That means we handle |abels.

Labels are mainly computed and created as necessary by the compiler. Sometimes, the user want to
specify himself alabel because it may want to break or resume several outer loops.

It is important to properly handles labels as, while we leave/enter a block, we have to properly des-
troy live variables present accross the boundaries of this block.

As for now, the LabelRepository is splitted into two parts. First one is externalised in
net.nosica.compiler.application (and should be in net.nosica.compiler.typechecker), second part is
handled directly by StatementVisitor.

The Label Repository has nearly the same interface as the VariableEnvironment. Except that what is
being stored are Label instead of Variable.

Each time a Statement is type checked, a pair of Labels named the begin label and the end label are
generated. Those labels will be used in case the statement that is going to be type checked is aloop.
They are generated in advance because we don't know yet if the labels will have to be computer
generated, or user defined. If the statement we're about to type check isin fact a LabeledStatement,
then al we have to do is take the user defined label, verify it is not aready defined using the La-
bel Reporitory, add it to the Label Repository and replace the computer generated beginL abel/endLa-
bel with the couple userDefinedL abel/endLabel.

If we encounter aloop, this couple will have to be pushed into a structure handled by StatementVis-
itor (that should be merged with LabelRepository). This structure has one role : make a correspond-
ance between label's scope and variable's scope so that we can properly defined the latter when we
use break/continue keywords. Entering/leaving a block is handled by global methods enterB-
lock()/endBlock().

Label handling apart, the statement will just translate Nosica loop code into the equivalent IR code.
Proper comments are placed in each block describing how is trandated the control flow.

ExceptionEnvironment : how to handle type checking
of exceptions

To bedone

IR translation

IR tranglation is driven by the type checker. The TypecheckVisitor, handling only exceptions, is
quite straightforward. The StatementVisitor handling the control flow is more complicated. Both
TypeCheckVisitor and StatementVisitor do not know the IR. They just manipulate an interface
called IRTranslator (located in net.nosica.compiler.application).

The IRTrandlator is responsible for proper translation between high level Nosica expression to low
level IR expressions.

12

Chapter 5. C Code Production

Nosica can emit code with different backends thanks to its Intermediate Representation stage. For
now, only a"c" code production back end has been implemented.

Parameter passing

WEe're emitting C, so basically, we cannot apply constructors, copy constructors or assign operators
directly on the variables stored in the frame.

Passing reference variables is quite straightforward, while passing primitive variables (by value se-
mantic) isalittle bit tricky.

Primitive arguments

Const primitive passing

Const primitive arguments have a 'by value' semantic. That means we have to duplicate them when
we want to pass them ‘const'.

string s;
T.f(s);

classT {
public static void f(const string s) {
/luses
}
}

istrandated into

net_nosica lang_string s;

net_nosica lang_string_constructor(&s);

T_f(s);

void T_f(net_nosica lang_string temp) {
net_nosica lang_string s;
net_nosica lang_string_constructor(&s);
net_nosica lang_string_operator_iassign(& s, temp);
/luses
net_nosica_lang_string_destructor(&s);

}

Therulesaresimple:

» Fromthe caller, there's nothing specia to do

e From the callee, and for an incoming const primitive argument A

e creates atemporary ‘temp'

e constructs 'temp'

calls the assign operator between ‘temp' and ‘A’ : 'temp’ <- 'A’

« modify the IR so that the code uses 'temp' instead of 'A' everywhere.

13

C Code Production

e destroy 'temp'

Rationale:
» if A contains mutable reference arguments, we want to be able to modify them without the
caller's copy to be affected, so we have to duplicate the variables, just as c++ would do.

In an optimised version, perhaps can we remove duplication when A does not contain mutable
fields.

Var primitive passing
Var primitive passing have a'by pointer' semantic.

string s;
T.f(s);

classT {

static public sub f(var string s) {
/luses

}
}

istrandated into

net_nosica_lang_string s;

net_nosica lang_string_constructor(&s);

T_f(&9);

void T_f(net_nosica lang_string *s) {
/luses

}
So that's quite straightforward.

References arguments

References arguments are always passed by pointer, so that's easier to handle. The rules are the
same, regardless of the ‘constness (or the 'varness) of the variable.

A a=new A();
T.f(a);
T.f2(a);

classT {
static public sub f(A @) {

}
static public sub f2(const A @) {

}

istrandated into :

Ag
a=ALLOC();

14

C Code Production

A_constructor(a);
T_f(a);
T f2(a);

void T_f(A *a) {
INCREF(a);
/lusea
DECREF(a);

}

void T_f2(A *a) {
INCREF(a);
/lusea
DECREF(a);

So therules are, for each reference arguments,

e insert an INCREF at the beginning of the function

* insert aDECREF at the end of the function

Results

retrieving result from a function can be tricky in the primitive case

Primitive result

Just as the "const parameter passing”, and because we don't emit assembly, we cannot directly modi-
fy the variables stored in the stack. Like const parameter passing, we have a"by value" semantic.

string s=T.f();

classT {
static public string f() {
return string(new char[0]);

istrandated into

/] sring s;

net_nosica lang_string s;

net_nosica_lang_string_constructor(&s);

/[temp = T.f();

net_nosica lang_string temp;

temp = T_f();

/I s=temp;

net_nosica lang_string_operator_iassign(& s, temp);

net_nosica lang_string_destructor(&temp); // end of scope for temp : let's destroy it
net_nosica lang_string_destructor(&s);

net_nosica lang_string T_f() {
[l temp = new char[0];
net_nosica_lang_char_array *temp;
temp = ALLOCY();
net_nosica_lang_char_array_constructor(&temp, 0);

15

C Code Production

INCREF(temp);

[/ temp2 = string(temp);

net_nosica_lang_string temp2;

net_nosica_lang_string_constructor(& temp2, temp);

DECREF(temp); // end of scope for temp : let's destroy it

/I return temp?2; (equivalent to assigning it to a ‘fake' variable result)

net_nosica lang_string result;

net_nosica lang_string_constructor(& result);

net_nosica lang_string_operator_iassign(&result, temp2);

net_nosica lang_string_destructor(&temp2); // end of scope for temp2 : let's destroy it

return result;

That seems to be realy complicated, but that's quite simple. We use the ¢ compiler to generate a
hard copy of the result (just like it does when passing it on the stack). Therefore, that copy must be
constructed in the callee and destructed in the caller so that each instance is constructed once and
destructed once. That's the hard part. So that's not that hard, isit ?

In the previous example, the result is stored into a temporary variable named "result”. This variable
is constructed but never destroyed. Of course, the previous code is not optimised. We can construct
the result directly into temp2 instead of using another variable, but we're not talking about optimisa-
tions here.

The 'result’ variable is passed into the 'temp’ variable in the caller. And temp is properly destroyed so
everything's safe.

Therulesaresimple:
* inthecdler

« retrieve the result of the call in atemporary variable (do not construct it)

» at the end of the scope of thistemporary variable, destroy it
* inthecdlee

e construct atemporary variable 'result’
e assign the result to the temporary variable 'result’

e donot destroy 'result’

Reference result
The reference case is much ssimpler
Aa=TI();
classT {

static public A f() {
return new A();

16

C Code Production

istrandated into

A*a
a=T_ f();
DECREF(a);
A*T_f0{
A *temp;
temp = ALLOC();
A_constructor(temp);

INCREF(temp);
return temp;

}

You can draw a parallel here between primitive result and reference result : in the callee, the result
must use an INCREF, and should not be DECREFed. In the caller, the variable is received normally
and then is DECREFed at the end of the scope.

Unwanted results

Sometime, we call a method that returns aresult we're not interested in.

In order for the reference counting algorithm to succeed, each result must be properly assigned a
temporary variable which is then destroyed in the usual way, by

» calling the proper destructor for a primitive variable

» applying a DECREF operation on areference variable

The assign operator

The nosica assign operator has the following signature :
classT {

sub operator~(T rhs) {
/ do the copy

Originally, the operator's signature was T->T instead of T->(). Unfortunately, the terms of the equa-
tions were then :

e T->T signature (T operator~(T rhs))

* by vaueresult

It appears that this equation has no solution. A by-value result needs the copy operator which has a
T->T signature. Hence the copy operator needs to returns the result by value, so thisleadsto an in-

finite recursion.

As this problem is a language problem and not an implementation problem, we had to change the
language on that point.

17

Definition of a TypeName

TypeName are the basic building block of Nosica's type system. TypeName is a very important ba-
sic block asit is created during parsing, and get transformed during all stages of compilation. Thisis
the only type used from parsing to production. So chances are you will see it everywhere.

A TypeName describes several things : package, class or interface name, array information and gen-
eric information. A TypeName has several predicats like :

!oool ean i sArray();

bool ean isScal ar();

bool ean i sGener | c();

bool ean i SEmpty();

These predicat allows to analyse the content of a TypeName. If the TypeName is not generic nor an
array, it is possible to iterate over its components. Y ou will use methods :

Iterator iterateConmponents();

lI'ypeNamtz get Fi r st Component s() ;

ll'ypeNameCorrponent get Last Conponent () ;

To respectively, iterate through components of TypeName, get the package part of a TypeName (ie,

the first N-1 elements), or get last component (ie the last Nth element). Each component of a Type-
Name is a TypeNameComponent.

18

Definition of a
TypeNameComponent

TypeNameComponent are the components of a TypeName. A TypeNameComponent can be generic
or not. The predicat is:
bool ean i sGeneric();

And the method to iterate over generic parametersis:
Iterator iterateGenericExtension();

This method returns an iterator over all TypeName as the generic parameters. You can retrieve the
package component name by calling the method
String get PackageEl enent () ;

19

AliasTable

An diastableisjust akind of map from a short name to a complete TypeName

Structure of an AliasTable

An diastableis composed of

e aparent AliasTable

e amap

During symbol extraction

AliasTable are created during symbol extraction. The top level AliasTable represent package
net.nosica.lang. In this root AliasTable all components of package net.nosica.lang are listed. You
will find for example

* int8 -> net.nosica.lang.int8

* string -> net.nosica.lang.string

An AliasTable is created for each CompilationUnit (and take net.nosica.lang's AliasTable as parent
AliasTable) An AliasTable is created for each classes and interfaces (and take its CompilationUnit's
AliasTable as parent AliasTable) An AliasTable is created for each nested classes and interfaces

(and take its enclosing's AliasTable as parent AliasTable) The CompilationUnit AliasTable contains
aliases for each import directive.

Example 1. CompilationUnit's example

package net.myorg;
import net.nosica.containers.Vector;
import net.myOrg.util.MyUtil

This will create an AliasTable with parent net.nosica.lang's AliasTable and with a map containing
the following keys:

» Vector -> net.nosica.containers.V ector
e MyuUtil -> net.myOrg.util.MyUtil

For each classes and interfaces (and nested one), the AliasTable will contain aliases for each import
directive, and for each template's arguments

Example 2. Clasy/I nterface example (relevant for nested versions)

20

AliasTable

class MyClass<T> {
import net.packagel.A A1,
import net.package2.A A2;
}

This will create an AliasTable with parent CompilationUnit's AliasTable and with a map containing
the following keys:

s T->T

* A1l->net.packagel. A

e A2->net.package2.A

During genericity solving

During genericity solving, the GenericitySolver will transform a type coming from Symbol extrac-
tion to afully resolved non generic (ie with qualified generic parameters) types. During this process,
new AliasTable will be created. The resulting AliasTable will contain

e asparent : the AliasTable created during symbol extraction

» asmap : theresolved generic parameters

Generic methods will have a custom AliasTable on the same model

e parent : enclosing type's AliasTable

» asmap : theresolved generic parameters

Interface of AliasTable

An AliasTable must be seen as a map. As a result, it is possible to iterate through al aliases, to
query for the existence of a particular dias, to get the resolved form of an alias.

Asan AliasTable "reuse" its enclosing aliasTable (the parent), it is possible to query for an existing
parent (true in most cases) and to retrieve the parent AliasTable. However those methods should be
of no interest most of the time.

Of course, a query is performed on current AliasTable and sent to parent's AliasTable if the result
can not be carried out in the current AliasTable.

21

Appendix A. GNU Free
Documentation License

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of thislicense document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License isto make a manual, textbook, or other functional and useful document "free" in the ser
ThisLicenseisakind of "copyleft", which means that derivative works of the document must themselves be freein
We have designed this License in order to use it for manuals for free software, because free software needs free doct
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright hol
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied v
A "Secondary Section" is a named appendix or afront-matter section of the Document that deals exclusively with th
The "Invariant Sections' are certain Secondary Sections whose titles are designated, as being those of Invariant Sect

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in th

A "Transparent” copy of the Document means a machine-readable copy, represented in aformat whose specificatior

22

GNU Free Documentation License

Examples of suitable formats for Transparent copies include plain ASCI| without markup, Texinfo input format, La

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, leg

A section "Entitled XY Z" means a named subunit of the Document whose title either is precisely XY Z or contains >

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Do

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercialy or noncommercialy, provided that

Y ou may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering r

If the required texts for either cover are too voluminous to fit legibly, you should put the first oneslisted (as many a

If you publish or distribute Opague copies of the Document numbering more than 100, you must either include ame

It is requested, but not required, that you contact the authors of the Document well before redistributing any large nt

4. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, p

* A. Useinthe Title Page (and on the covers, if any) atitle distinct from that of the Document, and from those of

* B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modificati

23

GNU Free Documentation License

* C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

* D. Preserve al the copyright notices of the Document.

* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

* F. Include, immediately after the copyright notices, alicense notice giving the public permission to use the Maoc
* G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts given in the Docui
* H. Include an unaltered copy of this License.

* |. Preserve the section Entitled "History", Preserveits Title, and add to it an item stating at least thetitle, year, n
* J. Preserve the network location, if any, given in the Document for public accessto a Transparent copy of the D
* K. For any section Entitled "Acknowledgements' or "Dedications’, Preserve the Title of the section, and preser
* L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section number:
* M. Delete any section Entitled "Endorsements’. Such a section may not be included in the Modified Version.

* N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with any Invariant Sec

* O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and col

Y ou may add a section Entitled "Endorsements’, provided it contains nothing but endorsements of your Modified V

Y ou may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for public

5. COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this License, under the terms defined in secti

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be rej

In the combination, you must combine any sections Entitled "History" in the various original documents, forming or

6. COLLECTIONS OF DOCUMENTS

24

GNU Free Documentation License

Y ou may make a collection consisting of the Document and other documents rel eased under this License, and replac

Y ou may extract a single document from such a collection, and distribute it individually under this License, provide

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is | e

8. TRANSLATION

Trandation is considered a kind of modification, so you may distribute translations of the Document under the term:

If asection in the Document is Entitled "Acknowledgements', "Dedications’, or "History", the requirement (section

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this Licer

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from tin

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numb

25

	The Nosica implementation book
	Table of Contents
	Chapter 1. General architecture
	Parsing
	Symbol extraction
	Type checking
	Optimisations
	Code production

	Chapter 2. Parsing
	Current process
	First step
	Second step

	Modifying the parser
	The parser
	Adding missing classes

	Chapter 3. Symbol extraction
	The process
	The datas

	Chapter 4. Type checking
	Type checking, or ensuring types are compatible
	Knowing the type of an expression
	Compatible rules

	Storing variable : the VariableEnvironment
	LabelRepository : how to handle jumps
	ExceptionEnvironment : how to handle type checking of exceptions
	IR translation

	Chapter 5. C Code Production
	Parameter passing
	Primitive arguments
	Const primitive passing
	Var primitive passing

	References arguments

	Results
	Primitive result
	Reference result
	Unwanted results

	The assign operator

	Definition of a TypeName
	Definition of a TypeNameComponent
	AliasTable
	Structure of an AliasTable
	During symbol extraction
	During genericity solving
	Interface of AliasTable

	Appendix A. GNU Free Documentation License

